
Fire risk 
prediction

1. Next day fire prediction: Problem definition and 
background

2. Current status: Establishment of a complete/reliable 
ML workflow 

3. Operational system presentation

4. Future steps: adaptation of DL methods for handling 
problem specificities
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Need
Systems that provide valuable information to 
the civil protection services for prevention and 
preparness, like fire incidents online alerting 
and monitoring, fire risk prediction and and  
spread prediction

Complexity
Forest fire occurrence and behaviour are the 
product of several interrelated factors, 
including ignition source, fuel composition, 
weather, and topography. The mathematic 
relations of those factors are not known, thus it 
is not easy to model the behaviour using 
physics based/theoretical models.

Concept
Data-driven models are good in discovering 
unknown relations between data. Exploit 
historical data from fire events and fire related 
parameters to train machine learning 
algorithms for predictive modeling.

Fire disasters examples

● 2019 : 1.65 million hectares burned in New 

South Wales of Australia and 83% increase 
in 2019.

● Brazilian Space Agency has reported an 83% 

increase in fire occurrences compared to the 
same period of the previous year.

● 2018 Attica wildfires spread up to a speed of 

124 km/h resulting to more than a hundred 
casualties.

● 2021 Greece wildfires burned>106 hectares

● Climate change provoke more and more 

droughts and heat waves and as a result 
more frequent and strong fires

Problem overview
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Motivation
• Essential tool for daily operational 
organization of fire services

• Current service of Civil Protection 🡪
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Motivation
• Essential tool for daily operational organization of fire services

• Current service of Copernicus EFFIS 🡪
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Ground Morphology: Elevation, Slope, 
Curvuture

Meteorology / Weather 
forecast: Temperature, 
Wind, Precipitation, 
Humidity

Location Related: Distance from roads, urban 
environment, power grids, machinery, rivers

The Fire Drivers usually adopted in literature that form the input features for the modeling

Static or slow 
change

Land Use - 
Land Cover

Dynamic

Satellite : 
Vegetation indices 
Surface 
temperature
Soil moisture

Climate: statistics of 
weather parameters
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Target variable - Fire / No Fire classes

Use of burn scar maps to annotate fire class 
on a specific area at a specific time frame

For each day all cells which suffered a fire 
event are assigned the "fire" class whereas 
all other cells belong to the "no fire" class. 
Right? Not exactly!

Fire Class 
(1)

No Fire 
Class (0)

Each parameter input vector is assigned to a 
cell grid for a specific date

Burn scar 
polygon

Fire 
ignition

Problem is solved as supervised 
classification. 
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• Predict the risk of fire occurrence in an area for a day k, exploiting 
information for the area exclusively gathered up until day k-1

• Essentially handled as binary {fire, no-fire} classification problem, due to 
label availability (historical fires)
◦ Ideally, a reliable confidence (probability of risk) level should be output

• Each area corresponds to a 500m cell of a grid (fireHub grid)
◦Grid covers the whole Greek territory

• Detailed historical data from 2010-2020
◦  > 800M instances
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Problem complications and usual pitfalls

●Which metric to optimize?

Alexis Apostolakis, Stella Girtsou, Giorgos 
Giannopoulos, Nikolaos S. Bartsotas, and Charalampos 
Kontoes. “Estimating Next Day’s Forest Fire Risk via a 
Complete Machine Learning Methodology,  2022

●Huge imbalance between classes “fire” 
and “no fire”

Girtsou, Stella, Alexis Apostolakis, Giorgos 
Giannopoulos, and Charalampos Kontoes. “A 
Machine Learning Methodology for Next Day Wildfire 
Prediction.” In IGARSS 2021 .

●Data Leakage may occur creating the train 
and validation datasets.
Alexis Apostolakis, Stella Girtsou, Charalampos Kontoes, Ioannis 

Papoutsis, and Michalis Tsoutsos. “Implementation of a Random 

Forest Classifier to Examine Wildfire Predictive Modelling in Greece 

Using Diachronically Collected Fire Occurrence and Fire Mapping, 

2021

●Annotating absence of fire as “no fire” 
class does not mean zero probability for 
fire. “No-fire” class is essentially a 
pseudo-absence.

Bar Massada, Avi; Syphard, Alexandra D.; Stewart, 
Susan I.; Radeloff, Volker C. 2012 Wildfire 
ignition-distribution modelling: a comparative study in 
the Huron-Manistee National Forest, Michigan, USA. 
International Journal of Wildland Fire.
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Classifier may become "too successful" when shuffling 
instances to produce train-validation sets

ERA5Land cell Grid 500x500m Fire cells

Problem complications and usual pitfalls

Training Set

Validation Set
When shuffling, cells 

from the same fire 
event with almost 

same feature vectors 
may participate both 

in training and 
validation set, 

causing data leakage
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ERA5Land cell Grid 500x500m Fire cells

Problem complications and usual pitfalls

Fire Cell

No fire Cell

Non-fire cells may  have a very similar feature vector with fire cell
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Problem complications and usual pitfalls

Big data and huge class 
imbalance

11-7-2022

12-7-2022

13-7-2022

14-7-2022

15-7-2022

…..............

…..........

Real world Dataset comprise of 
~270000 feature vectors (grid 

cells) per day. Each vector has 
90 parameters (including 

one-hot). Only 1/100000 is a fire 
cell
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• Concept drift
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Problem complications and usual pitfalls
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• Extreme data imbalance
◦ Ratio of ~1:100K between fire/no-fire cells

• Large data scale 
◦ Challenging to properly perform model selection

• Absence of fire phenomenon
◦  Areas that should have a fire occurrence but did not by chance

◦ 🡪 Chance = lack of impossible to capture features
◦ (i.e. a person’s decision to start a fire, a cigarette thrown by a driver, a lightning)

• Spatio-temporal correlations
◦ Adjacent cells are expected to be nearly-identical
◦ Previous years’ incidents might affect the short-term behavior of an area

•Optimization metric
◦ Which is the ideal metric to optimize? A high recall/sensitivity does not mean 

anything if it is combined with a low specificity on a "real world" dataset 14

Problematic even 
for imbalance 
handling methods

Problem complications and usual pitfalls
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Problem complications and usual pitfalls

Related works – General observations

• Unfit model selection/assessment 🡪 poor generalizability
◦Balanced train/validation/test setting
◦Usually poor/non-existent hyperparameter search

Convolutional NNs label every "patch" as fire or no-fire oversampling fire 
class and lowering the prediction resolution arbitrary (according the patch 
size) 

Works that employ simple Deep NNs instead of applying an extensive 
hyperparameterization methodology to determine the network's architecture, they 
define the depth of the network a priori.

Related works – Deep learning

patch
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Motivation
• What comprises a meaningful/useful result?

◦ Predict most of the fires
◦ Try not to predict for the majority of the territory (country) high risk for fire

• Translation: a good balance between sensitivity/specificity*
◦ Ideal: {>95%, >90%}
◦ Realistic:

◦ {>90%, >70%}
◦ {>80%, >80%}
◦ Depends on the exact application setting/needs
◦ 🡪 could reach the ideal if reformulate the problem 🡪 mid-term work
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Fires predicted 
corrrectly

———————
Actual fire

Area of Low Risk
——————————
Area of whole territory

                       TP
*Sensitivity = ——   
(P=TP+FN)      P

                      TN
*Specificity = ——
(N=TN+FP)     N

TN >> FP
TN+FP ≈ TN

N >> P 
N+P ≈ N



ML Method and Results
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Establishment of a complete ML workflow
•Formalize the problem as binary classification

◦Utilize model’s prediction confidence for quantifying risk probability

1. Extract an extended set of features
◦ Meteorological, topographical, vegetation, earth observation, and historical 

characteristics of the areas

2. Utilize state of the art classification algorithms
◦ Random Forest, XGBoost, ExtraTrees, Neural Networks
◦ Explore large hyperparameter spaces of the algorithms 

18
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Establishment of a complete ML workflow
3. Perform appropriate cross-validation

◦ Proper train-validation-test splits
◦ Ensure

◦ Avoiding data leakage
◦ Assessing the methods on the real-world dataset distribution
◦ Agility in adjusting sensitivity/specificity trade-off
◦ Generalizability

4. Select/define appropriate measures for model selection and 
evaluation

◦ In our extremely imbalance setting, distinguishing between model selection and 
evaluation is important

19
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1. Feature extraction

20

Category Features Spatial Res. Temp.Res. Source

DEM Dem, slope, curvature 25 m - Copernicus DEM

Land cover corine 100 m 3 years Corine Land Cover

Temperature max, min, mean 9 km hourly ERA5 land

Dewpoint max, min mean 9 km hourly ERA5 land

Wind speed dom_vel 9 km hourly ERA5 land

Wind direction dir_max, dom_dir 9 km hourly ERA5 land

Precipitation rain_7days 9 km hourly ERA5 land

Vegetation ndvi, evi 500 m 8 days NASA MODIS

LST lst_day, lst_night 1 km 8 days NASA MODIS

Fire history Frequency, f81 (smoothed) 500 m daily FireHub BSM

Coordinates xpos, ypos 500 m daily FireHub cell grid

Calendar Cycles month, wkd 500 m daily Fire Inventory date field
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2. Classification algorithms
•Neural Networks

◦Up to 5 layers depth
◦Up to 2000 nodes per layer
◦With/out dropout
◦Adam optimizer

• Tree Ensembles
◦Random Forest
◦XGBoost
◦ExtraTrees

22
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2. Classification algorithms
•Neural Networks

◦Up to 5 layers depth
◦Up to 2000 nodes per layer
◦With/out dropout
◦Adam optimizer

• Tree Ensembles
◦Random Forest
◦XGBoost
◦ExtraTrees

• Exploration of a large 
hyperparameter space

23

space_FCNN = {’n_internal_layers’: hp.choice(’n_internal_layers’,
[
(0, {’layer_1_0_nodes’: hp.quniform(’layer_1_0_w_nodes’, 100, 2100, 
100)}),
(1, {’layer_1_1_nodes’: hp.quniform(’layer_1_1_w_nodes’, 100, 2100, 
100),
’layer_2_1_nodes’: hp.quniform(’layer_2_1_w_nodes’, 100, 2100, 
100)}),
(2, {’layer_1_2_nodes’: hp.quniform(’layer_1_2_w_nodes’, 100, 2100, 
100),
’layer_2_2_nodes’: hp.quniform(’layer_2_2_w_nodes’, 100, 2100, 100),
’layer_3_2_nodes’: hp.quniform(’layer_3_2_w_nodes’, 100, 2100, 
100)}),
(3, {’layer_1_3_nodes’: hp.quniform(’layer_1_3_w_nodes’, 100, 2100, 
100),
’layer_2_3_nodes’: hp.quniform(’layer_2_3_w_nodes’, 100, 2100, 100),
’layer_3_3_nodes’: hp.quniform(’layer_3_3_w_nodes’, 100, 2100, 100),
’layer_4_3_nodes’: hp.quniform(’layer_4_3_w_nodes’, 100, 2100, 
100)}),
(0, {’layer_1_0_nodes’: hp.quniform(’layer_1_0_nodes’, 10, 100, 10)}),
(1, {’layer_1_1_nodes’: hp.quniform(’layer_1_1_nodes’, 10, 100, 10),
’layer_2_1_nodes’: hp.quniform(’layer_2_1_nodes’, 10, 100, 10)}),
(2, {’layer_1_2_nodes’: hp.quniform(’layer_1_2_nodes’, 10, 100, 10),
’layer_2_2_nodes’: hp.quniform(’layer_2_2_nodes’, 10, 100, 10),
’layer_3_2_nodes’: hp.quniform(’layer_3_2_nodes’, 10, 100, 10)}),
(3, {’layer_1_3_nodes’: hp.quniform(’layer_1_3_nodes’, 10, 100, 10),
’layer_2_3_nodes’: hp.quniform(’layer_2_3_nodes’, 10, 100, 10),
’layer_3_3_nodes’: hp.quniform(’layer_3_3_nodes’, 10, 100, 10),
’layer_4_3_nodes’: hp.quniform(’layer_4_3_nodes’, 10, 100, 10)}),
(4, {’layer_1_4_nodes’: hp.quniform(’layer_1_4_nodes’, 10, 100, 10),
’layer_2_4_nodes’: hp.quniform(’layer_2_4_nodes’, 10, 100, 10),
’layer_3_4_nodes’: hp.quniform(’layer_3_4_nodes’, 10, 100, 10),
’layer_4_4_nodes’: hp.quniform(’layer_4_4_nodes’, 10, 100, 10),
’layer_5_4_nodes’: hp.quniform(’layer_5_4_nodes’, 10, 100, 10)})
]
),
’dropout’: hp.choice(’dropout’,[0.1, 0.2, 0.3]),
#’dropout’: hp.choice(’dropout’,[None]),
’class_weights’: hp.choice(’class_weights’, [{0:1, 1:1}, {0:1, 1:2}, 
{0:2,1:3},
{0:1, 1:5}, {0:1, 1:10}]),
’feature_drop’: hp.choice(’feature_drop’,[[’dir_max’, ’dom_dir’,’month’, 
’wkd’]]),
’max_epochs’: hp.choice(’max_epochs’, [2000]),
’optimizer’: hp.choice(’optimizer’,[
{’name’:’Adam’,’adam_params’:hp.choice(’adam_params’,[None])}]),
’ES_monitor’:hp.choice(’ES_monitor’, [’loss’]),
’ES_patience’:hp.choice(’ES_patience’, [10]),
’ES_mindelta’:hp.choice(’ES_mindelta’, [0.0001]),
’batch_size’:hp.choice(’batch_size’, [512])
}

space_RF = {’algo’: hp.choice(’algo’, [’RF’]),
’n_estimators’: hp.choice(’n_estimators’, [50, 100, 120, 150,170,200, 250, 350,
500, 750, 1000,1400, 1500]),
’min_samples_split’: hp.choice(’min_samples_split’,[2, 10, 50, 70,100,120,150,180,
200, 250,400,600,1000, 1300, 2000]),
’min_samples_leaf’ :hp.choice(’min_samples_leaf’,[1, 10,30,40,50,100,120,150]),
’criterion’:hp.choice(’criterion’,["gini", "entropy"]),
’max_features’:hp.quniform(’max_features’, 1,10,1), # the x/10 of the total features
’bootstrap’:hp.choice(’bootstrap’,[True, False]),
’max_depth’: hp.choice(’max_depth’, [10, 20, 100, 200, 400,500, 700, 1000, 1200,2000, 
None]),
’feature_drop’: hp.choice(’feature_drop’, [[]]),
’class_weights’:hp.choice(’class_weight’,[{0:1,1:300},{0:1,1:400},{0:1,1:500},{0:1,1:1000}
])
}
space_XT = { ’algo’: hp.choice(’algo’, [’XT’]),
’n_estimators’: hp.choice(’n_estimators’,[10, 20, 40, 60, 80, 100, 200, 400, 600, 800, 
1000]),
’criterion’: hp.choice(’criterion’,[’gini’, ’entropy’]),
’max_depth’: hp.quniform(’max_depth’,2, 40, 2),
’min_samples_split’: hp.choice(’min_samples_split’,[2, 10, 50, 70, 100, 120, 150, 180,
200, 250, 400, 600, 1000, 1300, 2000]),
’min_samples_leaf’: hp.choice(’min_samples_leaf’,[5, 10, 15, 20, 25, 30, 35, 40, 45]),
’max_features’: hp.quniform(’max_features’, 1,10,1), # the x/10 of the total features
’bootstrap’: hp.choice(’bootstrap’,[True, False]),
’class_weights’: hp.choice(’class_weights’,[{0: 4, 1: 6}, {0: 1, 1: 10}, {0: 1, 1: 50},
{0: 1, 1: 70}]),
’feature_drop’: [],
}
space_XGB = { ’algo’: hp.choice(’algo’, [’XGB’]),
’max_depth’: hp.quniform(’max_depth’,2, 100, 2),
’n_estimators’: hp.choice(’n_estimators’,[10, 20, 40, 60, 80, 100, 200, 400, 600, 800, 
1000]),
’subsample’: hp.choice(’subsample’,[0.5, 0.6, 0.7, 0.8, 0.9, 1]),
’alpha’: hp.choice(’alpha’, [0, 1, 10, 20, 40, 60, 80, 100]),
’gamma’: hp.choice(’gamma’,[0, 0.001, 0.01, 0.1, 1, 10, 100, 1000]),
’lambda’: hp.quniform(’lambda’,1, 22, 1),
’scale_pos_weight’: hp.choice(’scale_pos_weight’,[9, 15, 50, 70, 100, 200, 500]),
’feature_drop’: [],
}
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3. Cross validation
•Train-validation-test

•Two schemes for cross validation on train-validation splits
◦Train-validation set on years 2010-2018

•Proper dataset splitting for model selection and evaluation
◦  Ensure that events from the same day/fire event are not distributed in different folds

•Test sets always maintains the initial, extremely imbalanced distribution
◦Years 2019 and 2020

https://galaxyinferno.com/what-is-validation-data-used-for-machine-learning-basics/ 

24
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3. Cross validation
•Two alternative schemes for cross 
validation
◦Default: 

◦ Consider all the fire (minority) instances of the 
training set

◦ Geographically sample the no-fire (majority) 
instances to create a balanced set

◦ Perform k-fold cross-validation and select models 
on the average best validation scores

◦Alternative:
◦ Make the training set balanced, but keep the 

validation sets highly imbalanced
◦ Adjust so that each training set precedes the 

respective validation set on a yearly level
◦ Perform model selection on highly imbalanced folds 

closer to the real distribution
https://androidkt.com/pytorch-k-fold-cross-validation-using-dataloader-and-sklearn/  
https://udaygajavalli1996.medium.com/cross-validation-and-its-types-e07dc257c72 

25
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4. Measures for model selection
●  

26
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Results
• Realistic targets (sensitivity/specificity):

◦{>90%, >70%}

◦{>80%, >80%}

27

• Achieved:
◦ {90%, 67%}, {95%, 67%} 

2019 2020
Sensitivity Specificity Sensitivity Specificity

RF-sh5-defCV 0.9 0.55 0.97 0.56
ET-rh5-altCV 0.92 0.59 0.96 0.59

XGB-sh2-altCV 0.91 0.59 0.96 0.58
NN-rh5-defCV 0.9 0.66 0.95 0.67

NNd-rh5-defCV 0.91 0.65 0.95 0.66
NNd-sh2-defCV 0.9 0.67 0.95 0.67
NNd-sh5-defCV 0.93 0.59 0.96 0.62
NN-auc-altCV 0.9 0.61 0.97 0.59
NN-rh5-altCV 0.9 0.61 0.97 0.58
NN-sh5-altCV 0.91 0.61 0.96 0.58

NN-sh10-altCV 0.93 0.62 0.97 0.58
NNd-sh10-altCV 0.91 0.61 0.97 0.6



Centre of EO Research &
Satellite Remote Sensing 
Centre of EO Research &
Satellite Remote Sensing 

Results
• Agility for different configurations:

28

AUC f-Score rh2 rh5 sh2 sh5 sh10
Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec.

Default Cross-Validation
RF 0.87 0.66 0.86 0.67 0.78 0.71 0.88 0.59 0.87 0.61 0.9 0.55 0.94 0.47
ET 0.57 0.83 0.79 0.69 0.75 0.73 0.81 0.68 0.79 0.69 0.94 0.54 0.79 0.68

XGB 0.54 0.8 0.57 0.75 0.67 0.74 0.74 0.69 0.68 0.71 0.91 0.56 0.93 0.51
NN 0.71 0.77 0.67 0.8 0.72 0.78 0.9 0.66 0.83 0.68 0.92 0.58 0.96 0.47

NNd 0.66 0.84 0.77 0.78 0.79 0.76 0.91 0.65 0.9 0.67 0.93 0.59 0.97 0.47
Alternative Cross-Validation

RF 0.74 0.8 0.13 0.99 0.82 0.71 0.87 0.64 0.91 0.47 0.91 0.47 0.91 0.47
ET 0.32 0.96 0.27 0.97 0.85 0.69 0.92 0.59 0.94 0.52 0.93 0.52 0.95 0.45

XGB 0.7 0.77 0.34 0.94 0.74 0.69 0.82 0.62 0.91 0.59 0.95 0.46 0.95 0.46
NN 0.9 0.61 0.48 0.88 0.84 0.67 0.9 0.61 0.84 0.64 0.91 0.61 0.93 0.62

NNd 0.81 0.71 0.51 0.87 0.85 0.68 0.89 0.64 0.88 0.66 0.91 0.59 0.91 0.61
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Results
• Agility for different configurations:
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AUC f-Score rh2 rh5 sh2 sh5 sh10
Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec.

Default Cross-Validation
RF 0.87 0.66 0.86 0.67 0.78 0.71 0.88 0.59 0.87 0.61 0.9 0.55 0.94 0.47
ET 0.57 0.83 0.79 0.69 0.75 0.73 0.81 0.68 0.79 0.69 0.94 0.54 0.79 0.68

XGB 0.54 0.8 0.57 0.75 0.67 0.74 0.74 0.69 0.68 0.71 0.91 0.56 0.93 0.51
NN 0.71 0.77 0.67 0.8 0.72 0.78 0.9 0.66 0.83 0.68 0.92 0.58 0.96 0.47

NNd 0.66 0.84 0.77 0.78 0.79 0.76 0.91 0.65 0.9 0.67 0.93 0.59 0.97 0.47
Alternative Cross-Validation

RF 0.74 0.8 0.13 0.99 0.82 0.71 0.87 0.64 0.91 0.47 0.91 0.47 0.91 0.47
ET 0.32 0.96 0.27 0.97 0.85 0.69 0.92 0.59 0.94 0.52 0.93 0.52 0.95 0.45

XGB 0.7 0.77 0.34 0.94 0.74 0.69 0.82 0.62 0.91 0.59 0.95 0.46 0.95 0.46
NN 0.9 0.61 0.48 0.88 0.84 0.67 0.9 0.61 0.84 0.64 0.91 0.61 0.93 0.62

NNd 0.81 0.71 0.51 0.87 0.85 0.68 0.89 0.64 0.88 0.66 0.91 0.59 0.91 0.61

Sensitivity/Specificity
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Results
• Feature importance

◦Measured via feature permutation

30

Rank NNd (rh2-defCV) 
Feature Imp. (%)

RF (rh5-defCV) 
Feature Imp. (%)

XGB (rh5-defCV) 
Feature Imp. (%)

1 dom_vel 6.07 dom_vel 12.94 dom_vel 7.47
2 evi 2.38 evi 2.37 evi 2.24
3 f81 1.99 f81 2.18 dem 1.68
4 xpos 1.47 ndvi_new 2.13 max_temp 1.63
5 ypos 1.18 mean_temp 1.72 xpos 1.58
6 dem 1.17 max_temp 1.71 pos 1.48
7 rain_7days 0.57 lst_day 1.48 f81 1.36
8 max_temp 0.44 xpos 1.2 rain_7days 0.8
9 frequency 0.26 ypos 1.12 mean_dew_temp 0.67

10 slope 0.19 mean_dew_temp
 1.11  mean_temp 0.47
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Results
• Feature importance

◦Measured via feature 
correlation

31
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Results

32
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Cephalonia island

Fire ignition

Forest Fire Prediction for 03/07/2021
Results



System architecture
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Operational system
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Architecture concept
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Operational system
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Back-end processing
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Operational system
Datacube insights
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Operational system
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Desktop/mobile front-end

Desktop Mobile

GNSS Location 

https://riskmap.beyond-eocenter.eu/



Future work
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Directions
• Handle absence of fire phenomenon

◦No-fire instances that are very close to fire instances 
◦ Problematic for learning proper boundaries
◦ Reduces specificity by default

• Better handle imbalance
◦Existing schemes are only half-measures
◦Training/validation/test on different distributions

• Examine rare cases and small disjuncts
◦Indications that fire instances form discrete clusters 
within the hyperspace 

• Handle data sizes
◦Try to limit undersampling as much as possible to 
exploit the whole dataset 40

Imbalanced Learning_ Foundations, Algorithms, and Applications (2013, 
Wiley-IEEE Press)
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Why Deep learning : A DL model is a neural network model composed of multiple processing layers. They 
have proven to be highly efficient in finding intricate structures and learning data with multiple levels of 

abstraction

●Dimensionality of the input data.

The instances in this problem refer to specific 
locations that have spatial correlations. 
Convolutional NNs can discover that kind of 
relations where traditional ML algorithms (such 
as ANN, SVM, weak learner ensembles) are 
likely to fail.

●Time Series

The risk of fire ignition and spread can be 
related to long periods of drought or periods 
with high temperatures (long heat waves) that 
form the suitable conditions for a fire to start. 
DL LSTM takes into account past states for 
learning and are suitable to detect those 
correlations.

●Complex feature correlations

Deep neural networks (DNN) may produce 
more meaningful representations in deeper 
layers.
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Approach 1: Siamese NNs
• Architectures that aim at learning a 
similarity function 
◦Comprise of parallel NN architectures that 

receive different inputs but learn the same 
parameters

• SNNs provide the framework for 
handling several of the 
aforementioned issues
◦Particularly triplet loss based SNNs

◦ Input as triplets of {anchor, positive, 
negative}

42

Structure-preserving visualisation of high dimensional single-cell datasets

https://www.nature.com/articles/s41598-019-45301-0#Sec17
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Approach 1: Siamese NNs
• Absence of fire and extreme imbalance 
can be handled to some extent by properly 
constructing {anchor, positive, negative} 
triplets
◦Hard negatives can be ignored or transformed into 

positives
◦Semi-hard should probably be emphasized

43

https://medium.com/@enoshshr/triplet-loss-and-siamese-neural-networks-5d363fdeba9
b 

https://medium.com/@enoshshr/triplet-loss-and-siamese-neural-networks-5d363fdeba9b
https://medium.com/@enoshshr/triplet-loss-and-siamese-neural-networks-5d363fdeba9b
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Approach 1: Siamese NNs
• Absence of fire and extreme imbalance 
can be handled to some extent by properly 
constructing {anchor, positive, negative} 
triplets
◦Hard negatives can be ignored or transformed into 

positives
◦Semi-hard should probably be emphasized

• Variations of undersampling techniques 
can be combined 🡪

44

https://medium.com/@enoshshr/triplet-loss-and-siamese-neural-networks-5d363fdeba9
b 

https://medium.com/@enoshshr/triplet-loss-and-siamese-neural-networks-5d363fdeba9b
https://medium.com/@enoshshr/triplet-loss-and-siamese-neural-networks-5d363fdeba9b
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Approach 1: Siamese NNs
• Variations of undersampling techniques 
can be combined
◦E.g. Tomek links

◦Removing majority instances

◦Transforming majority into minority instances

45

https://imbalanced-learn.org/stable/under_sampling.html 

https://imbalanced-learn.org/stable/under_sampling.html
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Approach 1: Siamese NNs
• Rare cases and small disjuncts

◦Consider more than one fire classes
◦ E.g. by clustering 

◦Properly adjust the triplet generation function

◦Learn more “clear” boundaries per fire class
◦ Limit the absence of fire phenomenon

46
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Approach 1: Siamese NNs
• Data sizes (~800M instances)

◦Can scale decently in 11M instances in a mediocre GPU 

• Initial findings
◦Vanilla Siamese* reached similar effectiveness scores with tuned baseline ML models

◦ Without any triplet tuning or over/undersampling
◦ With moderate network tuning

47

* https://bering-ivis.readthedocs.io/en/latest/metric_learning.html  

https://bering-ivis.readthedocs.io/en/latest/metric_learning.html
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Approach 2: Semantic Segmentation
• CNN architectures that aim at 
performing image classification on 
the pixel level
◦Utilized when the exact shape of an item 

(class) needs to be identified
◦Applications

◦ Aerial images
◦ Medical images

48

https://towardsdatascience.com/semantic-segmentation-with-deep-learning-a-guide-and-code-e52fc8
958823 

https://towardsdatascience.com/semantic-segmentation-with-deep-learning-a-guide-and-code-e52fc8958823
https://towardsdatascience.com/semantic-segmentation-with-deep-learning-a-guide-and-code-e52fc8958823
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Approach 2: Semantic Segmentation
• CNN architectures that aim at 
performing image classification on the 
pixel level
◦Utilized when the exact shape of an item 

(class) needs to be identified
◦Applications

◦ Aerial images
◦ Medical images

49

https://www.azavea.com/blog/2017/05/30/deep-learning-on-aerial-imager
y/ 

https://www.azavea.com/blog/2017/05/30/deep-learning-on-aerial-imagery/
https://www.azavea.com/blog/2017/05/30/deep-learning-on-aerial-imagery/
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Approach 2: Semantic Segmentation
• But we do not have images in our setting?

◦Each grid cell can be considered as a pixel of an image corresponding to the whole 
considered territory

◦Each feature of each cell can be considered as a different channel of the image

• Potential gains
◦Direct consideration of spatial correlations

◦Dataset significantly reduced to a few tenths of thousands of images
◦ 🡪 manageable

◦ Imbalance can be handled orthogonally

50
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Other Directions
• Model Explainability

◦A difficult challenge in machine learning and especially deep learning is to provide 
explanations for the model's predictions. 

◦New methods have been developed (SHAP, DL adjusted permutation importance, Partial 
Dependence Plots) to assist the interpretation of the results of deep learning as  applied 
to provide 

• Potential gains
◦ Identify most influencing factors for each prediction
◦Determine/discover meaningful latent features

51
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Other Directions
• Model Uncertainty

◦The model's decision of NNs is based on the computation of a certain likelihood by the 
model. However, the certainty of this likelihood is unknown.

◦ Introducing Bayesian methodology it is possible to compute the uncertainty in the 
model's prediction

• Potential gains
◦Provide a measure of the certainty for each model's prediction.

52
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Results
• Real-world, significant task

◦ Practically not handled until now 

• Establishment of a complete/sound ML methodology
◦ Good/exploitable effectiveness 

◦ Daily provision of a fire risk map to the Fire Service

• Several promising research directions
◦ Several gaps to be handled

53
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Publications
o A. Apostolakis, S. Girtsou, G. Giannopoulos, N. S. Bartsotas, and C. Kontoes, “Estimating Next Day’s Forest Fire Risk via a 

Complete Machine Learning Methodology,” Remote Sensing, vol. 14, no. 5, p. 1222, Mar. 2022, doi: 10.3390/rs14051222.  

o S. Girtsou, A. Apostolakis, G. Giannopoulos, and C. Kontoes, “A Machine Learning Methodology for Next Day Wildfire 
Prediction,” Jul. 2021. doi: 10.1109/igarss47720.2021.9554301.  

o A. Apostolakis, S. Girtsou, C. Kontoes, I. Papoutsis, and M. Tsoutsos, “Implementation of a Random Forest Classifier to 
Examine Wildfire Predictive Modelling in Greece Using Diachronically Collected Fire Occurrence and Fire Mapping Data,” 

in MultiMedia Modeling, Springer International Publishing, 2021, pp. 318–329. doi: 10.1007/978-3-030-67835-7_27.  

o A. Apostolakis, “Next Day Forest Fire Risk Prediction in Greece Using Machine Learning,” SafeGreece 2021.  

o CEST 2021 conference, oral presentation: “Daily Forest Fire Prediction modeling and Forest Fire Information System 
(FFIS)”

o Συγγραφή κεφαλαίου στην Επιτροπή Έρευνας της Ανθεκτικότητας των Ελληνικών Δασικών Οικοσυστημάτων (Ε.Α.Δ.Ο.)
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Team
• Beyond center of excellence of the 
National Observatory of Athens

• Team
◦Alexis Apostolakis

◦Stella Girtsou

◦Giorgos Giannopoulos

◦Nikos Mpartsotas

◦Charalampos Kontoes
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Thank you !!

Questions?
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Existing research approaches
• Unfit model selection/assessment 🡪 poor generalizability

◦Balanced train/validation/test setting

◦Usually poor/non-existent hyperparameter search

• Practically no utilization of Deep Learning methods
◦While fitting on the setting

◦ Data sizes
◦ Spatial correlations 

57
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Results
• Realistic targets (sensitivity/specificity):

◦{>90%, >70%}

◦{>80%, >80%}

58

• Achieved:
◦ {90%, 66%}, {93%, 62%} 

◦ {82%, 71%}, {79%, 76%}

• Agility on balancing the trade-off between sensitivity/specificity
◦  Via combinations of cross-validation schemes and model selection evaluation 

measures 

• A proper problem formulation and baseline methodology
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Problem definition
• Features

◦Earth Observation features: NDVI, EVI 

◦Meteorological features: Temperature (max, min, mean), Wind speed (max, dominant), 
Wind direction (wind_direction, dominant_direction), Cumulative Precipitation

◦Geomorphological/natural features: DEM (DEM, aspect, slope, curvature), Land use/Land 
cover

59
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Domain specificities
• Extreme data imbalance

◦Ratio of ~1:100K between fire/no-fire cells

• Large data scale 
◦Challenging to properly perform model selection

• Absence of fire phenomenon
◦  Areas that should have a fire occurrence but did not by chance
◦🡪 Chance = lack of impossible to capture features

◦ (i.e. a person’s decision to start a fire, a cigarette thrown by a 
driver, a lightning)

• Spatio-temporal correlations
◦Adjacent cells are expected to be nearly-identical
◦Previous years’ incidents might affect the short-term behavior of 

an area 60

Problematic even 
for imbalance 
handling methods
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Domain specificities
• Concept drift

61
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Existing research approaches
• Simplified variation of the problem: fire susceptibility

◦Risk of fire occurrence within a large period (e.g. month, year)

◦ Imbalance and size significantly reduced

◦Much less use for real-world operational organization

• Methodological errors 🡪 unreliable results
◦ Instances shuffled before train/validation/test split 🡪 information leakage

◦ Instances’ class changes propagated into the test set

62
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Existing applied approaches

63
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Approach 2: Semantic Segmentation
• But we do not have images in our setting?

◦Each grid cell can be considered as a pixel of an image corresponding to the whole 
considered territory

◦Each feature of each cell can be considered as a different channel of the image

• Potential gains
◦Direct consideration of spatial correlations

◦Dataset significantly reduced to a few tenths of thousands of images
◦ 🡪 manageable

◦ Imbalance can be handled orthogonally

64
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Results
• Agility for different configurations:

65

AUC f-Score rh2 rh5 sh2 sh5 sh10
Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec.

Default Cross-Validation
RF 0.87 0.66 0.86 0.67 0.78 0.71 0.88 0.59 0.87 0.61 0.9 0.55 0.94 0.47
ET 0.57 0.83 0.79 0.69 0.75 0.73 0.81 0.68 0.79 0.69 0.94 0.54 0.79 0.68

XGB 0.54 0.8 0.57 0.75 0.67 0.74 0.74 0.69 0.68 0.71 0.91 0.56 0.93 0.51
NN 0.71 0.77 0.67 0.8 0.72 0.78 0.9 0.66 0.83 0.68 0.92 0.58 0.96 0.47

NNd 0.66 0.84 0.77 0.78 0.79 0.76 0.91 0.65 0.9 0.67 0.93 0.59 0.97 0.47
Alternative Cross-Validation

RF 0.74 0.8 0.13 0.99 0.82 0.71 0.87 0.64 0.91 0.47 0.91 0.47 0.91 0.47
ET 0.32 0.96 0.27 0.97 0.85 0.69 0.92 0.59 0.94 0.52 0.93 0.52 0.95 0.45

XGB 0.7 0.77 0.34 0.94 0.74 0.69 0.82 0.62 0.91 0.59 0.95 0.46 0.95 0.46
NN 0.9 0.61 0.48 0.88 0.84 0.67 0.9 0.61 0.84 0.64 0.91 0.61 0.93 0.62

NNd 0.81 0.71 0.51 0.87 0.85 0.68 0.89 0.64 0.88 0.66 0.91 0.59 0.91 0.61


