

A Transferable Sentinel-based Agriculture Monitoring Scheme

Vasileios Sitokonstantinou

<u>vsito@noa.gr</u>

BEYOND Centre of Excellence

www.beyond-eocenter.eu

Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing (IAASARS)

National Observatory of Athens (NOA)

Monitoring Systems

Polar orbit satellites X-/L-band **Station Sentinel Mirror Site**

ANALYSIS DATA

INFORMATION

Geostationary orbit satellites **MSG Seviri**

In-situ platforms & networks

Hellenic National Sentinel Data Mirror Site / ESA-NOA Agreement

RECAP Project

➤ Contributes to the simplification of the CAP for all stakeholders enhancing the transparency and efficiency of the monitoring process

Developed improved **remote monitoring** of CAP CC and Greening rules to assist the Paying Agencies (targeted on-field inspections)

Offer farmers a tool supporting them to better **comply** with CAP CC and Greening rules (personalized guidance)

Enable agricultural consultants to access data in the platform to develop their own services within it (application reuse)

EO in RECAP

 The issue: Effective decision making on farmers' compliance to CAP CC and Greening rules

Soil/Carbon: Soil Organic matter	Crop residue burning restrictions (may not burn crop residues unless there is a plant health reason)	GAEC 6
Biodiversity: Crop Diversity	Diversification of crops	Greening 1
Soil/Carbon: Grassland	Maintenance of permanent grassland	Greening 2
Soil/Carbon: Soil cover	Maintain soil cover (unless agronomic justification)	GAEC4
Water: Nitrates	Area treated with N	SMR1
Water: Abstraction	Permits required for irrigation	GAEC2
Biodiversity: Habitats	Maintenance of semi-natural habitats	SMR2, SMR3
Landscape Features	Protecting scheduled ancient monuments	GAEC7
Water: Nitrates	Must inform of new slurry installation construction	SMR1
Water: Buffer Strips	Location of watercourses	GAEC1

- **The opportunity**: The availability of suitable and freely available data (Sentinels)
- **The solution**: Automated, transferable, robust classification & modeling tools based on multi-temporal, multi-spectral data

NOA in RECAP

Achievements in a nutshell

By collecting and analysing datasets from Paying Agencies (**RECAP partners**):

- 1. Developed a novel, parcel-based, machine learning, processing workflow for classifying crops using S2 (Crop Diversification)
- Developed a methodology based on the Revised Universal Soil Loss Equation (RUSLE) for the assessment of water pollution at parcel level (Statutory Management Requirements)
- 3. Customized an in-house burnt scar mapping algorithm for **detecting burnt parcels** with S2 (Stubble Burning)

Crop Identification

Multi-temporal approach

- Sentinel-2 MSI imagery time-series
- Capture crop development stages

Parcel-based image analysis

- Segmentation using the LPIS data
- Pixel values within a parcel object are averaged

Feature space

- 1. RGB, NIR, Red-Edge and SWIR bands of all S2 scenes
- 2. Vegetation Indices (NDVI, PSRI, NDWI, SAVI) are additionally computed and incorporated

Algorithms tested

- Weighted k-Nearest Neighbor
- Random Forest
- Support Vector Machines (2nd order polynomial)

Supervised Classification

SVM OA | 91.59%

- More than 91% overall accuracy for the 9 main crop classes in the AOI
- Use of free and open data: transferability
- Geographically independent and potentially scalable
- Some of the crop types have very similar spectral signatures (e.g. wheat, barley and oats)
- Crop types of inconsistent vegetation cover (e.g. shrub grass) could provide broad and fluctuating spectral signatures

SVM PA	SVM UA
95.52	92.14
92.31	93.51
92.34	91.22
80.43	89.08
83.23	95.21
89.22	95.94
89.96	93.85
75.45	83.44
79.80	82.69
	95.52 92.31 92.34 80.43 83.23 89.22 89.96 75.45

Impact of Sentinels

- A Landsat 8 equivalent scheme was implemented and compared to the Sentinel 2 scenario
- Comparisons were made in terms of spectral, spatial and temporal characteristics.
- Sentinel 2 scheme performance proved to dominate with respect to all three sensor characteristics¹.
- Sentinel's 10 m and 20 m spatial resolution offered satisfactory results even for parcels smaller than **0.5 ha**
- Sentinel 2's 5 day revisit time ensures the construction of informative image time series even in heavily clouded regions

¹ Scalable Parcel-Based Crop Identification Scheme Using Sentinel-2 Data Time-Series for the Monitoring of the Common Agricultural Policy. doi: https://doi.org/10.3390/rs10060911

Future work

- Currently the scheme is being tested on 5 diverse pilot scenarios
- Feedback from validated compliance statistics would allow the better tuning of methods
- Ancillary user-generated data (georeferenced and dated photos) will be incorporated to assist in the decision making

Conclusions

The Remote Sensing Component of the RECAP platform provides **automated** workflows for:

- 1. Crop identification
- 2. Burnt area mapping
- 3. Polluted water runoff risk assessment System design & implementation characteristics
 - →On demand
 - → Time and cost efficient
 - → Geographic transferability
 - → Scalability to higher data dimensions (Big Data)

EOPEN project

JOINT DECISION AND INFORMATION GOVERNANCE ARCHITECTURE

Thank you

Any questions?