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Abstract: Earth Observation (EO) data can be leveraged to estimate environmental variables that
influence the transmission cycle of the pathogens that lead to mosquito-borne diseases (MBDs).
The aim of this scoping review is to examine the state-of-the-art and identify knowledge gaps on
the latest methods that used satellite EO data in their epidemiological models focusing on malaria,
dengue and West Nile Virus (WNV). In total, 43 scientific papers met the inclusion criteria and were
considered in this review. Researchers have examined a wide variety of methodologies ranging
from statistical to machine learning algorithms. A number of studies used models and EO data that
seemed promising and claimed to be easily replicated in different geographic contexts, enabling the
realization of systems on regional and national scales. The need has emerged to leverage furthermore
new powerful modeling approaches, like artificial intelligence and ensemble modeling and explore
new and enhanced EO sensors towards the analysis of big satellite data, in order to develop accurate
epidemiological models and contribute to the reduction of the burden of MBDs.

Keywords: mosquito-borne infectious diseases; Satellite Earth Observation data; epidemiological
modeling; entomological data; vector-borne diseases; Earth Observation for health; malaria; dengue;
West Nile Virus; scoping review

1. Introduction

Mosquito-Borne Diseases (MBDs) infect almost 700 million people every year and are recognized
in over 100 countries affecting all continents apart from Antarctica and causing millions of deaths
annually [1]. The burden of MBDs is estimated to be higher in tropical and subtropical areas, affecting
disproportionately the poorest populations. Despite the fact that there have been global campaigns
to eradicate MBDs [2], these diseases are re-emerging and even more emerging in countries where
they were previously unknown. The reason for this may be manifold. The changing climatic and
ecological conditions, global travel and trade, human behavior [3], as well as the rapid and unplanned
urbanization [4], are key factors that influence the seasonal and geographic distribution of vectors’
population and therefore the transmission of the pathogens.
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Most of the environmental variables (geographical, climatological, and hydrological) that
influence the transmission cycle of MBDs between pathogenic agents, vectors and intermediate
hosts can be monitored efficiently from satellites that carry specific instruments capable of capturing
these parameters frequently and on a global scale [5–7]. Kazansky et al. listed the various satellite
sensors that can provide environmental data and could contribute as an input to a Malaria Early
Warning System [8].

It is worth noting that between the years of 2014 until 2018, there has been a remarkable growth
in EO satellites, counting in total approximately 700 satellites in space [9], operating advanced sensor
payload providing enhanced spectral and spatial resolution with shorter revisit times and larger
coverage, enabling improved earth monitoring at global level [10]. This growth of observations was
followed by a substantial increase in the number of studies that exploit EO data in order to better
understand the geographic distribution, abundance and dynamics of MBDs and the associated vectors
and pathogens [11].

The scope of this paper is to review recent literature for identifying studies that utilized
satellite EO data for epidemiological modeling of malaria, dengue and West Nile Virus (WNV).
Epidemiological models and Early Warning Systems (EWSs) that utilize EO data have been used as
tools for helping decision-makers to improve health system responses, take preventive measures in
order to curtail the spread of MBDs and address the relevant priorities of the Sustainable Development
Goals (SDGs) such as good health and well-being (SDG 3) and climate action (SDG 13) [12].

In this scoping review we solely focused on three MBDs, namely malaria, dengue and WNV.
The exclusion of other MBDs serves the economy of the paper only. We believe that these choices
are representative of a wide range of MBDs; malaria is most commonly spread by the Anopheles
mosquito genus that is also responsible for the transmission of Lymphatic Filariasis. The Aedes genus
can transmit Dengue fever, Chikungunya, Lymphatic Filariasis, Rift Valley Fever, Yellow Fever and
Zika, while the Culex genus is responsible for transmitting Japanese Encephalitis, Lymphatic Filariasis
and WNV. Therefore, the use of EO data in the epidemiology of malaria, dengue and WNV do not
differ substantially from those we did not consider.

1.1. Malaria

Malaria is the most prevalent, life-threatening and costly parasitic infection worldwide,
affecting over 100 countries and territories which live under the risk of malaria transmission [2].
The global campaign to eradicate malaria rolled out by the World Health Organization (WHO) led
to important reductions in new malaria cases in endemic countries during 2000–2015. Despite this
achievement there were still 219 million cases of malaria in 90 countries reaching 435,000 deaths
in 2017 [13]. Research has been conducted to examine the effect of climatic conditions on malaria
transmission [14,15] with ambient ground temperature and moisture affecting Anopheles mosquitoes
population and the incubation period [16]. Furthermore, intense rainfall can reduce the larvae density
by flushing first stage larvae [17].

1.2. Dengue

Dengue is a mosquito-borne viral infection and is endemic in many tropical and subtropical
regions in the world [18]. Since 1970 dengue has rapidly spread and can be found in more than
100 countries in regions of the world including the Americas, Eastern Mediterranean, South-East
Asian and Western Pacific [19]. Temperature affects the extrinsic incubation period of the Aedes
mosquito [20] and rainfall is also one of the most important environmental factors that affects the
vector’s reproduction cycle. The vector abundance can be influenced by rainfall events by increasing
the availability of mosquito juvenile habitats (e.g., containers in the patio with standing water) [21]
and drought conditions can increase the larval habitat by increasing household water storage [22].
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1.3. West Nile Virus

WNV was first identified in the West Nile district of Uganda in 1937 and was considered
a low risk disease for humans and livestock species until the 1990s [23]. Since then WNV has
rapidly spread across all continents except for Antarctica [24]. In nature, the WNV cycles between
birds, which act as the principal hosts and mosquito vectors and transmit the virus to other birds.
Humans, equines and other mammals act as incidental or dead-end hosts and are not involved in
the transmission cycle. Most human infections are asymptomatic (around 80% of infected people) or
can lead to mild symptoms like fever, headache, tiredness and body aches. More severe cases can
cause neuroinvasive disease including meningitis, encephalitis, acute flaccid paralysis and death in
people [23]. The transmission and geographic distribution of WNV is associated with the existence of
both the avian reservoir host and mosquito-vector, which is affected by environmental (abiotic and
biotic) and socio-economic conditions [25]. The involvement of birds (in addition to mosquitoes) and
the potential of EO techniques that may contribute to understanding of movement of migratory birds
make the disease of particular interest in this context. WNV transmission can thrive under favorable
environmental conditions; Culex pipiens can transmit WNV efficiently at a temperature of 30◦ [26].

2. Material and Methods

2.1. Literature Search Strategy

This scoping review included epidemiological and entomological studies that utilized EO
(climatic and environmental) data in mapping, modeling and forecasting of malaria, dengue and
WNV. Whereas a systematic review uses systematic methods to critically appraise a focused research
question, a scoping review comprehensively maps evidence across a broader research question using
diverse sources [27]. Accordingly, in this scoping review we have sought to review recent literature
for identifying the current state-of-the-art in epidemiological modeling of the MBDs using satellite
EO data. The search was limited to peer-reviewed literature in English that was conducted during
the period 1 January 2012 to 31 December 2018. This search phase was selected due to the fact that
from 2012 onward the annual growth rate of publications relating to health and dealing with remote
sensing has been steadily increasing, with malaria and dengue being the most frequent disease-specific
keywords [11]. The Web of Science, PubMed and the Scopus databases were searched electronically to
retrieve relevant literature and articles. Boolean operators combining multiple keywords salient to the
research topic were queried in the abovementioned databases. The keywords were “Earth observation”,
“Remote sensing”, “Satellite data”, “vector-borne disease*”, “mosquito-borne disease*”, “modeling”,
(“NDVI” OR “NDWI” OR “EVI”; AND “malaria” OR “Dengue” OR “WNV”), “temperature”,
“precipitation”,“malaria”, “West Nile Virus” and “dengue”. The results were combined using the
Mendeley software, and duplicates were removed. The titles and abstracts were initially examined to
determine the relevance of the articles. Thereafter, full texts were screened to ascertain if the selection
criteria were met. Finally, the reference lists of the reviewed papers were scanned to gain additional
literature. All the authors listed in this paper participated in each step of the selection procedure.

2.2. Inclusion and Exclusion Criteria

The scoping review was conducted adapting the Arksey and O’ Malley [28] and Levac et al. [29]
methodological framework. This framework includes a transparent method for linking the purpose
and the area of research [28] and uses an iterative team approach for the selection of the studies, while it
includes a numerical summary and qualitative thematic analysis [29]. The selection criteria involve
post hoc inclusion and exclusion criteria. To ensure consistency and eliminate studies that were out
of the scope of this paper the authors discussed and agreed on the initial criteria at the beginning of
the selection process with further refinements until the final selection.

The articles finally selected were:
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1. Peer-reviewed articles published in English between 1 January 2012 and 31 December 2018.
2. Publications that integrated satellite EO derived climatic and environmental predictors for

analyzing mosquito-borne epidemics. Studies that did not use satellite EO data or used solely in
situ data were excluded from the review.

3. Studies on models that included disease incidence, prevalence and cases as variables, as well as
studies that used entomological data as response variables.

4. Articles referring to the impact of (inter-annual) climate variability on pathogen transmission,
excluding the ones using climatic scenarios. By climatic scenario we refer to studies that used
future projections under different climate change scenarios. Therefore, we only focused on studies
that utilized historical data and built knowledge from the past events.

5. Studies that used epidemiological models, making reference to the achieved level of accuracy
rates. In contrast studies that did not bring any evidence or information on the accuracy of the
used models were excluded.

3. State-of-the-Art Review

A total of 576 relevant articles were initially identified by the electronic search on Web of Science,
Scopus, and PubMed during the period January 2012 to December 2018 (Figure 1). The 112 articles in
Figure 1 refer to records found through the review of the references of the selected articles as well as
articles that authors recommended. A total of 43 articles were finally selected as meeting the eligibility
criteria for this scoping review; they are briefly described in Tables A2 and A3 in the Appendix A.

The majority of the 43 studies have analysed cases of malaria (n = 20), followed by dengue (n = 15),
and WNV (n = 8). Figure 2 illustrates the number and geographic reference of the selected studies
together with the disease of study.

Figure 1. Flow Diagram of article selection (inclusion/exclusion) process.
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Figure 2. Distribution Map of the MBDs that were included in this review.

The selected articles were organized into two main categories (Figure 3) with respect to the
data used as dependent variables for the prevalence of the diseases: (a) epidemiological data
(disease incidence, prevalence or case, mortality data) (n = 31) and (b) entomological data (n = 11),
while Stilianakis et al. has examined both (a) and (b) [30], and Valiakos et al. has additionally used wild
bird data in complement to the epidemiological data [31]. The first category (a) used clinical records
from the general human population as the main data source. In this case the majority of the studies
(n = 23) referred to the clinical data as “confirmed cases”, meaning that the patients were confirmed
through laboratory testing. Buczak et al. [32] and Arboleda et al. [33] included also cases that were
considered as “possible”, meaning that the patients exhibited some of the symptoms of the infection.
Refs. [31,34–39] explicitly used laboratory confirmed cases (microscopy/Rapid Diagnostic Tests (RDT)),
while Sewe et al. utilized the number of deaths caused by malaria [40]. The second category (b)
used entomological data providing information on the vectors’ density, that is highly dependent on
the ambient climatic and environmental conditions and significantly influences the transmission
of the pathogen. The mosquitoes’ collection was implemented by ovitraps, classical dipping
techniques [41,42] or by recording indices, like the Breteau Index (BI) [33,43], House Index (HI) or
Container Index (CI) [33,43,44], and the Entomological Inoculation Rate (EIR) [45,46] indices, the latter
being a commonly used measure that estimates the number of infected bites per person and per unit
time (usually year) [47]. Different kinds of traps (e.g., light traps, magnet traps baited with octenol,
CO2 baited traps, odour-baited MM-X) were used by the various studies [41,45,46,48–52] as a method
to capture mosquitoes, and produce the vectors’ density assessments and its status as infected or not.
It is worth noting that there is only one study [53] that used crowdsourced data, providing information
on both the vector (% of mosquito bites, % of mosquito Larvae) and human cases (% of known human
dengue cases) in the area. The share of the applied methodology with respect to the epidemiological
or entomological data is illustrated in Figure 3.
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Figure 3. Share of the selected papers as per epidemiological/entomological data and MBDs.

Through our database search, mainly data-driven and statistical approaches were returned.
Increased computational power as well as the number of open-source datasets over the past years
has given rise to these data-driven models that can relate environmental variables with the species
occurrence or abundance [54]. These models represent input-output relationships built upon available
datasets and do not require detailed knowledge about the complex interactions of climate, vector,
host and pathogen. Mechanistic models on the other hand aim at capturing the biological and
environmental mechanisms using dynamic equations [55] in order to define causality. In order to
capture the full dynamics of the system, in their majority these models, when the study area has small
spatial extent, utilize weather data from ground stations; in situ measurements generally represent the
input fluctuations with smaller error compared to the satellite-derived indirect products. This scoping
review will focus predominately on data-driven and statistical models.

3.1. Environmental EO Predictors

The environmental EO based predictors that were leveraged by the studies examined in this review
are listed in Figure 4. Among the various climatic and environmental variables that were examined as
possible predictors in these models, the vast majority of the studies used air, land and soil temperature
data (n = 45) , precipitation (n = 34) , and vegetation indices (n = 42) as listed in details in Figure 4.
Many processes that are associated with mosquitoes are strongly influenced by temperature, as the rate
of development of the virus inside the vector is linked to warmer temperatures [26]. Air temperature
estimates were either indirectly linked to the remotely sensed Land Surface Temperature (LST), which
is widely used as a proxy, or by collection of in situ observations. LST is the radiative skin temperature
of the land surface and is an important climate variable that is estimated from Top-of-Atmosphere
brightness temperatures from the infrared bands of the satellite’s sensors [56]. Associating LST and air
temperature is a complex task as proved in [57] since it is highly dependent on the geographic location
of the study area. Only one study [30] reported the association of WNV infections to soil temperatures
obtained from the ECMWF’s (European Centre for Medium-RangeWeather Forecasts)Re-Analysis
(ERA-Interim) datasets. Soil temperature data refer to ground based observation at several depths [58].
Mendez-Lazaro et al. [59] and Laureano-Rosario et al. [60] have examined the influence of the Sea
Surface Temperature (SST) instead, because of the vicinity to the coastal areas of San Juan in Puerto
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Rico and Yucatan state of Mexico respectively. Likewise for the LST parameter, the results from
these studies showed that also the SST was significantly associated with the reported dengue cases.
Bhatt et al. developed a dengue-specific temperature suitability index based on a biological model
with temperature as an input [61]. This index included two temperature-dependent values affecting
the dengue transmission cycle: (i) the life duration of Aedes vector and (ii) the Extrinsic Incubation
Period (EIP).

Heavy rainfalls have a negative effect on the development of Anopheles gambiae; flooding and
flushing at the early stage larvae leads to high levels of larval mortality [17]. The same holds for the
Aedes genus, as their reproductive cycle can be disrupted by extensive rainfall through flushing out the
aquatic stages from breeding sites [62]. Precipitation satellite sensor derived data were mainly acquired
from the Tropical Rainfall Measuring Mission (TRMM)(n = 10 [32,35,40,43,50,51,63–67]) (n = 10),
while some studies used the WorldClim (https://www.worldclim.org/) (n = 3 [31,41,61]), ERA-Interim
(https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim) (n = 1 [30]) and
Meteosat-7 (n = 1 [45]) and other sources such as local ground-stations.

Vegetation and vegetation indices are another important parameter that showed strong
correlations with the vectors’ behavior and their biological cycle. Most of the studies (n = 26)
used the Normalized Difference Vegetation Index (NDVI), which is a proxy index of vegetation
density and distribution due to the fact that is chlorophyll sensitive. NDVI is not only restricted to
studies of plants; various studies have coupled vegetation dynamics with biodiversity, animal species
distributions [68], movement patterns of animals (e.g., migratory birds) and the performance of animal
populations (reproduction or survival). NDVI data can be used in combination with other data to
model the temporal and spatial dynamics of vectors [69]. The Enhanced Vegetation Index (EVI) that
is relevant to the canopy’s structural variations [70] was also used (n = 8), followed by the Green
Index (GI), the Soil Adjusted Vegetation Index (SAVI)(n = 2) and the quasi-yellowness index (p-YI) [34].
Ruangudomsakul et al. used a multitude of indices derived from the satellite based Global Vegetation
Health System of NOAA such as (a) the Smoothed NDVI (SMN) to estimate the vegetation growing
and senescence phases, (b) the Smoothed Brightness Temperature index (SMT), (c) the Temperature
Condition index (TCI) for assessing the ambient thermal conditions, (d) the Vegetation Condition Index
(VCI) that was used as a proxy for assessing the ambient moisture, and (e) the Vegetation Health Index
(VHI) [71]. Vegetation information could also be derived from Land Use/Land Cover (LU/LC) maps
in order to identify suitable vector breeding sites and was used by several studies (n = 14). LU/LC
maps were also utilized for identifying other factors that might influence the transmission of MBDs
like urban areas, health facilities, proximity to water bodies, etc.

Relative humidity plays an important role in the survival rate of the vectors, affecting differently
various species [72]. Relative humidity estimates were derived from EO sensors systems onboard
of satellites such as the Indian National Satellite System (INSAT)-3D imager [63], the Atmospheric
Infrared Sounder (AIRS) instrument onboard the NASA’s Aqua satellite [43] and the ERA-Interim
reanalysis approach by Stilianakis et al. [30]. Adde et al. estimated the minimum and maximum
relative humidity [48], while in Machault et al. the relative humidity was calculated using only in situ
observations [44].

The evapotranspiration (ET) encompasses the amount of water that is removed from the land
surface and returns to the atmosphere through the process of evaporation and transpiration [73].
Remote sensing techniques have been used by [74] in order to estimate the actual ET (ETa), that is the
quantity of the water actually removed from the surface of the earth. Positive ETa is often associated
with high levels of surface water and soil moisture availability, both of which indicate suitable vectors’
breeding site conditions. In [65,75] the ETa parameter was derived from MODIS sensor data products,
in [66] it was used in the global ET from MOD16 product, while [48] used in situ data to assess the ET.

In the coastal city of San Juan, reference [59] has associated the dengue cases with the Sea Level
Pressure (SLP) and the Mean Sea Level (MSL). MSL was one of the variables that was significantly
associated with the human dengue cases. Higher dengue incidences were related to the MSL maxima

https://www.worldclim.org/
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim
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due to the fact that coastal areas are more prone to flooding during seasonal peak. Stilianakis et al.
examined the soil water content as a parameter [30], which did not show an association with the
presence of infected mosquitoes. Most of the studies (n = 16) referred to the role of the water bodies in
the life circle of the mosquitoes because they serve as breeding sites for larval development. In order
to depict the water bodies extent, several studies (n = 9) used the Normalized Difference Water Index
(NDWI), which represents changes in liquid water content, while other studies (n = 7) additionally
included as a parameter to the model the proximity to the different kinds of water bodies. Studies such
as Diboulo et al. [46] and Giardina et al. [39] used the permanent or semi-permanent waters taking
into account both natural and man-made containers. Other studies considered proximity to the running
water, like rivers [76] or streams [31,77] and stagnant waters and lakes [45,78].

Topography is a significant factor in the transmission of MBDs as it affects the living conditions
of the Anopheles and Aedes aegypti mosquitoes and indicates the best suited breeding sites [79,80].
Fourteen studies in this review [31–33,39,42,44,45,49,67,76–78,81,82] utilized Digital Elevation Models
(DEMs) to extract the topographic parameters of elevation, aspect and slope. Moreover, DEMs were
used for calculating the Topographic Wetness Index (TWI) [41,42,78], an index that gives information
about the wetness of an area, taking into account the topographic slope and the upstream area.
Nmor et al. specifically focused on topographic variables for the prediction of malaria vector breeding
sites [42]. It was the only study that considered the association of topographic position index (TPI),
curvature and Convergence index (CI) with malaria vector habitats.

Two studies [30,59] investigated the association of the MBDs with alternative climatic factors such
as the wind speed. According to Stilianakis et al. [30] low wind speed was associated with the existence
of infected mosquitoes, while high speed reduced the chances for blood meals, and consequently
human infections.
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Figure 4. Overview of studies that utilized EO derived environmental/climatic variables:
LST [32,35,37–40,43,45,46,49–52,63–67,75,83–85], Air temperature [31,41,44,48,53,59,60,76,81,82,86,87], Temperature Index [61], Soil Temperature [30], SST [59,60], SMT
[71], SSTA [32], Precipitaiton (Sat) [32,35,40,43,45,50,51,63–67,82], Precipitation In-situ [30,31,37–39,41,44,46,48,49,53,59–61,64,76,81,83,84,87],
NDVI [31–34,37,38,40,44–46,50–52,61,65–67,75–78,81,83,84,88], EVI [32,35,41,52,63–65,67], SAVI [34,67], Green Index [34], p-YI [34], SMN [71], VCI [71], VHI [71],
LU/LC* [31,37,39,43,44,48,49,52,53,64,76,77,83,85], Elevation [31–34,37–39,43–45,64,76,77,81,82], Slope & Aspect [31,33,34,42,76,77], TWI [41,42,78], TPI [42], SLP [59],
MSL [59], NDWI [38,44,49–52,67,83,85], ANDWI [44], MNDWI [34,86], ET [48,66], ETa [65,75], Relative Humidity [30,43,44,48,63], Wind Speed [30,59], SOI [32], Solar
Radiation [48]. * = vegetation types, proximity to water, urban areas, etc.
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3.2. Other Non-Environmental Predictors

Although climatic parameters are highly influential in the transmission of MBDs, non-climatic
factors such as social, economic and demographic parameters listed in Table 1 can affect the magnitude
and the spatial extent of the MBDs’ transmission [55]. The studies of Quintero et al. [89,90] examined
cases of poor water and sanitation conditions that compel inhabitants to store water in open containers,
thus building breeding habitats for the mosquitoes. In this review the study that was conducted by
Buczak et al. also included variables related to socio-economic parameters, namely running water,
hygienic services and electric lighting into the final model [32]. Moreover, Homan et al. highlighted
the impact of socio-economic risk factors in malaria spread and constructed a socio-economic status
index (SES) [78]. The SES was constructed using Principal Component Analysis (PCA) and was based
on six variables: (a) rented or owned dwelling, (b) owned agricultural area, (c) highest education level
of household, (d) location of the kitchen, (e) the wall structure and (f) the floor cover. Furthermore,
Bhatt et al. included multiple socio-economic variables to generate dengue risk maps [61]; the urban
accessibility data that define the travel time of people to a city using land and water—based mass
transit mechanisms, relative poverty and demarcation of urban and peri-urban areas.

Furthermore, demographic data were used to estimate the rate of vulnerability of the population
and identify the geographical areas where the risk of a disease outbreak is higher [91]. Areas with
higher population density are at higher risk of transmitting a pathogen [90]. Several studies (n = 5)
have used population data as independent variables [41,64,78,82,86], while others (n = 2) used the
population data for estimating the vulnerability and the level of the risk [38,85]. In general the
population density originated from National Administrative Departments. Marcantonio et al. that
used Europe as its AOI, additionally used satellite imagery to extract the intensity of light at night that
was used as a proxy for human population density [83].

Two studies that investigated the WNV risk factors, used data related to birds, since birds act
as the principal host of the WNV transmission cycle. Tran et al. digitized and categorized the birds’
migratory routes based on their fly way direction (western and eastern) [86], while Valiakos et al.
utilized as a predictor, cases of birds that were positive to WNV antibodies [31].

It is believed that moon light affects the vectors’ behavior, increasing its activity during full moon
and third quarter moon phase. According to Mokraoui et al., there is a correlation between moon
phases and dengue outbreaks [53]. Moon light affects the vectors’ behavior, increasing its activity
during full moon and third quarter moon phase. This was the only study that examined if there is any
correlation between the moon light and dengue outbreaks.

Table 1. Overview of studies that utilized Non- EO Environmental Predictors.

Non-EO Environmental Predictors Number of Studies (Reference)

Demographic data
Population density 8 [38,41,64,78,82,83,85,86]

Socio-economic conditions
Running water 1 [32]

Hygienic services 1 [32]
Electric lighting 1 [32]

Socio-economic status index (SES) 1 [78]

Other non-environmental data
Birds 2 [31,86]

Moon phase 1 [53]

3.3. Satellite EO Systems Used for Assessing the Environmental Predictors

Satellite EO data were the main sources for assessing the environmental predictors. All studies
used remotely sensed data to estimate environmental or climatic parameters, while some others
incorporated in situ data additionally. In terms of data sources, the low resolution satellites
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(spatial resolution of 300 m and less) were used as the major optical data sources. The MODIS
based information products that were mostly used for the prediction of mosquito borne diseases
refer to the LST, NDVI, EVI, and NDWI. Moreover, the TRMM mission was the most important
source to timely acquire precipitation data, while Meteosat-7 data were also used by Amek et al. to
estimate the rainfall at a 8 km wide cell [45]. Landsat-7 and Landsat-8, were both used to derive
vegetation indices [33,76,77] as well as to generate LU/LC maps. Correspondingly Adde et al. [48]
and Yue et al. [85] generated detailed LU/LC maps from using SPOT-5 and GF-1 data at the spatial
resolution of 10 m and 16 m respectively. Machault et al. utilized very high resolution satellite imagery
(GeoEye-1, 0.41 m) in order to create detailed LU/LC maps and downscale the study at the level of
the household [44]. Similarly, Homan et al. used QuickBird imagery at the spatial resolution of 0.61
m for deriving precise information on household’s proximity to lakes, and to the nearest clinic, but
also for producing detailed estimations of the NDVI and TWI indices in the neighborhood of the
households [78].

4. Results and Discussion

EO data were found to elicit environmental and climatic variables, that could
significantly contribute to epidemiological modeling of MBDs referring to predictive mapping,
geographic distribution and abundance of the pathogen and vectors, health risk assessment,
understanding the transmission dynamics, identification, implementation of appropriate control
strategies and their assessment. The associations between predictors and MBDs were either positive or
negative as listed in Table 2. Furthermore, the study by Merkord et al. has successfully incorporated
satellite EO data into the early warning EPIDEMIA System [67], while Lowe et al. highlighted
the potential for integrating EO data into a EWS for Southern Brazil [82]. All studies have used
satellite remotely sensed data, while some incorporated in situ data. Although the latter tended to be
accurate sources of information, they have been of limited use in the literature, most likely because
they were single point measurements and sparsely distributed observations, while the interpolation
between points, necessary in case of larger study areas, added more uncertainty in the prediction.
Contrariwise, according to the majority of the studies the satellite based observations provided
large areas of coverage and uninterrupted acquisitions of series environmental data needed for the
predictions. The primary satellite data sources that were exploited extensively from most of the studies
in this review were medium to high resolution and freely available. It is worth noting that besides
the unforeseen long lifespan of the two most commonly used satellites Terra and Aqua, they are
expected to switch off operations in a few years, and there is a need for replacing them with similar
satellite/sensor systems e.g., SUOMI-NPP/VIRS, JPSS/VIRS, Sentinel-2, Sentinel-3, which have not
yet been fully exploited. From the analysis it is obvious that three MODIS based vegetation indices
have been widely used; these are the NDVI, the EVI and the water index NDWI with 500 m spatial and
16 days temporal resolution. The day and night LST products based on MODIS were also extensively
exploited providing continuous daily information in 1 km wide cells. Furthermore, remotely sensed
precipitation data in the spatial resolution of 0.25 to 5.0 degrees have been derived using the TRMM
mission with a revisit time of 23 days at the equator and 46 days at the highest latitudes. The TRMM
mission provided precipitation data for 17 years over the tropical and subtropical areas; however this
mission is no longer available as it was turned off in 2015.

4.1. Predictors for Malaria

Most of the studies in this review took place in tropical, subtropical, temperate and Sub-Saharan
climatic zones as shown in Figure 2. Temperature was one of the most influential parameters affecting
the malaria occurrence in tropical regions as shown in [35,37,39,45,46,48,84,88] and only one study [38]
located in Tanzania, claimed that temperature performed poorly as a predictor. Lag times and degrees
of temperature varied between the studies, which could be explained due to the fact that the studies
were located in different climatic zones; Diboulo et al. that is located in Burkina Faso, and as such



Remote Sens. 2019, 11, 1862 12 of 40

is characterized by a Sub-Saharan climate, has found that the density of the vector An. gambiae was
positively associated with the day temperature during the two previous months counting from the
date that the collection of the mosquitoes has occurred, and it was negatively associated with the night
temperature during the current and two previous months [46]. In studies that run in the tropical zone,
as for example [45] that geographically refers to Western Kenya has shown that there was a three
month lag pattern between temperature and peaks of malaria admissions and that the An. gambiae
mosquito’s density was negatively associated with the mean day temperature of 29 ◦C. The study of
Adde et al., which was located in French Guiana, concluded that a minimum temperature of 20 ◦C
proved to be always beneficial for mosquito An. darlingi breeding [48], while the study conducted
by Ssempiira et al. that was located in Uganda, observed that the incidence of malaria was increased
with day temperature, however very high temperatures above 29 ◦C resulted in a decline of malaria
incidences [37]. This result was concordant with the study of Amadi et al., which was located at Baringo
in Kenya and found that average monthly minimum temperatures between 16.2–21 ◦C (lag 1-month)
made favorable conditions for the increase of the malaria risk [84].

Additionally, precipitation proved to be another significant predictor in the tropical zone highly
associated with malaria occurrence [35,37,40,84]. Contrariwise, the study of Kabaria et al. that
was conducted in Tanzania (tropical region) was the only one study that claimed precipitation
performed poorly as a predictor [38]. Lag periods ranged significantly in the case of precipitation as
well; Sewe et al. found out that all three study regions across the Area of Interest (AOI) located in
Western Kenya resulted in different lag periods (0 to 12 weeks) [40] and Amadi et al. found positive
associations between rainfall and malaria at a 2-month lag time [84]. Kanyangarara et al. [77] and
Midekisa et al. [65] took place in humid subtropical climates; Kanyangarara et al. [77] found higher
malaria risk during the rainy season at a total monthly rainfall between 94–181 mm, while Midekisa et al.
found positive associations between rainfall and malaria cases at a lag time of one to three months [65].

Different vegetation indices (NDVI & EVI) were also tested in the literature and have been
associated with malaria occurrences in tropical areas [35,37,40,76,84]. NDVI values between 0.3–0.4
have showed an increased correlation with the malaria risk as stated in [40,84]. EVI was also positively
associated with reported malaria cases in humid subtropical areas like Midekisa et al. [65] and dry
Mediterranean climates like Portugal in the study of Benali et al. [52]. The SAVI was positively
associated with malaria distribution, meaning that the malaria vector prefers greener vegetation
according to Malahlela et al. [34], which examined an AOI that is located in Vhembe District in South
Africa and is characterized by varying topography; the north-western part is in the semi-arid climatic
zone, while the southern-eastern part lies on the subtropical zone.

Proximity to water bodies however was negatively associated with malaria incidence in tropical
areas like Uganda [37] and vector’ density in Western Kenya [45], while water indices performed
poorly as predictors both in temperate climates like South Africa [34] and tropical like Tanzania [38].
The percentage of dense/riverine vegetation was the most significant predictor for Kabaria et al. [38].

Socioeconomic factors were proved to be significant covariates [78], with the outdoor occupation
being the most significant risk factor, followed by the SES and population density. This result is
concordant with [92] that associated outdoor occupation with higher malaria risk, since people
working outdoors are more exposed to receiving infective mosquito bites.

4.2. Predictors for Dengue

Temperature was an important explanatory variable related to the prediction of dengue cases
in the tropical zone [43,59,64,71]. Ashby et al. claimed that day and night temperature played an
important role in the determination of the dengue fever niche, with the day temperature limiting the
reproduction rate of the main vector of dengue fever, Aedes aegypti [64], while the study of Sarfraz et al.,
which was located in Thailand, found that a temperature range between 30–35 ◦C had a high impact
on Aedes vector breeding [43]. Hii et al. mentioned a consistent and stable association between
mean temperature and dengue incidence [87] and Mokraoui et al. highlighted the importance of
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temperature for estimating the dengue index, as longer dry seasons create more suitable sites for
dengue outbreaks [53]. Ssempiira et al. found that both temperature indices of SMT and TCI with a lag
time of 8–9 weeks were related to dengue incidence rate [37]. Two studies were located in subtropical
areas; Yue et al. was conducted in a coastal area in China and found that day temperature and night
temperature were significantly correlated with dengue fever outbreaks [85], while German et al. found
that low temperatures had a negative association with the oviposition activity [50].

NDWI is an indirect proxy for precipitation and humidity, and it was associated in many studies
conducted in subtropical climates with dengue occurrences; Scavuzzo et al. [51] and German et al. [50]
examined areas that were located in the subtropical city of Tartagal in Argentina and claimed that
NDWI was positively associated with the oviposition activity of Aedes aegypti vector, while [85],
found that NDWI was significantly positively correlated with dengue outbreaks.

Other variables that proved to be significant were various LU/LC classes as well as socioeconomic
factors; Yue et al. mentioned that the land type was significantly correlated with the dengue fever
outbreak [85] and the study conducted by Machault et al. took place in Tartane in French Antilles,
which is characterized by a tropical climate and found that the “sparsely vegetated soil” land use class
was associated with the presence of water filled containers, while the “asphalt” land use class was
negatively associated with the presence of Aedes larvae-positive containers [44]. Yue et al. claimed that
human population density was one of the most significant predictors [85].

4.3. Predictors for WNV

Temperature was one of the most significant predictors for the WNV incidence, which appeared
mainly in temperate [30,31] and continental climates [75,81,83,86], meaning large seasonal temperature
differences, with warm to hot summers and cold winters. Temperature was positively associated
with the WNV incidence [75,81,83,86], while Stilianakis et al. located in Greece mentioned that soil
and air temperature were between the most significant predictors for WNV disease outbreak [30].
Marcantonio et al. [83] and Young et al. [81] which examined Europe and the US Great Plains
respectively, both characterized by warm and humid continental climate, suggested precipitation as
one significant predictor for WNV incidence. Moreover, and according to [75] located in the US Great
Plains, cumulative ETa has shown positive association with WNV relative risk. Elevation played an
important role in the prediction of WNV incidence [81], while low elevation was positively associated
with both human and wild bird cases [31].

The vegetation index NDVI showed positive associations with the WNV risk according to
Chuang et al. [75] and Young et al. [81] both located in the same region of the US Great Plains, while the
study of Conley et al. that was conducted in arid and semi-arid areas mentioned that the seasonality
of EVI was a significant predictor of the vector’s habitat [41]. Of the land use predictors, the irrigated
croplands and the populated forest were the most significant predictors that were positively associated
with the WNV incidence [75]. Kanyangarara et al. identified the WNF outbreak of the previous year as
a risk factor [77].
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Table 2. Association between predictors and diseases; the green color shows positive association between the disease and the predictive parameter, while the red
color indicates negative association in the different climatic zone. (T = Temperature, P = Precipitation, ET = Evapotranspiration, Veg = Vegetation, El = Elevation,
TWI = Topographic Wetness Index, WS= Wind Speed, Hum = Humidity, Pop = Population)

Parameter Malaria Dengue WNV
Association (+) association (−)

association
(+) association (−)

association
(+) association (−)

association
TTropical [35,37,39,45,48,84,88] [48] [43,59,64,71]

TSemi-arid [63]
TSubtropical [50,85] [49]
TSub-Saharan [65]
TContinental [75,81,83,86]

TMediterranean [30]

PTropical [35,39,40,84] [48] [93]
PSemi-arid [63] [81]

PSubtropical [65] [50] [49]
PSub-Saharan [65]
PContinental [83]

ETTropical [48] [48]
ETSemi-arid [63]

ETContinental [75]

VegTropical [38,40,45,84] [44,71]
VegSemi-arid [34] [41]

VegMediterranean [52,65]
VegContinental [75]

ElContinental [31]
ElSubtropical [77] [93]

TWITropical [42]

NDWISubtropical [50,51] [85] [86] [83]
NDWIContinental [86] [83]

WSMediterranean [30]

HumMediterranean [30]

PopTropical [64]
PopSemi-arid [41]

PopSubtropical [85]
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4.4. Data Driven Uncertainties and Limitations

The quality of the input data has been the major limiting factor in regard to the sensitivity of
the models and the accuracy of the predicted variables and risks. Given the dependence of MBDs
prediction algorithms on temporal data, data availability and reliability were the major concerns of
many studies.

A lack of systematic epidemiological and entomological data collection [34,37,81], uncertainty of
the ingested dataset due to under-diagnosis and underreporting [35,38] and a confined number of
cases [30] were reported as the main limitation reasons. Furthermore, the computation of entomological
indices such as the CI, HI and BI [43] may have constrained the estimations due to the fact that these
indices are highly dependent on the samples of the vectors in the containers that use the immature
forms of the vectors. Sarfraz et al. suggests that pupal survey may have been more suitable for
investigating the risk because it collects the mature form of the vectors, which may be more indicative
for revealing the real trend of the risk [43]. The use of the statistical method of Inter-VA Autopsy from
Sewe et al. might have under or over estimated the number of deaths [40].

Some of the studies mentioned additional limiting factors that were related to the satellite imagery.
Quality problems relevant to image blurring and image stripe was mentioned by Yue et al. [85].
In addition studies that examined areas located in subtropical and tropical regions [34,48] and used
optical data faced issues due to the existence of thick clouds. Fusion of optical and Synthetic Aperture
Radar (SAR) data seemed to have resolved the problem to some extent.

4.5. Modeling Approaches and Evaluation

There has been a wide variety of approaches used for modeling/correlating MBDs
with the EO derived predictors. The various approaches ranged from simple regression to
advanced machine-learning techniques as shown in Figure 5. Most of the studies (n = 27)
used statistical models including regression models [30,31,33,34,42,44,48–50,59,60,66,75,77,83–86,88],
AutoRegressive Integrated Moving Average (ARIMA) models [35,65], spatial statistics [37,39,45,46,78],
and probabilistic graphical models (Bayesian Networks) [71], while some studies (n = 13) used data
mining [32,93], machine learning [63,81,93] and ensemble approaches [33,38,41,61,64,66,76], and [51]
examined both. Some of the most important findings are presented below.

From this review it comes to our attention that the employment of regression methods has been
relatively easy to apply and automate. These approaches included autoregressive terms and functions
for seasonality in order to model the serial correlation. A Generalized Linear Mixed model (GLM)
with Poisson distribution was utilized by Amadi et al. [84], while Sewe et al. [66] used the Generalized
Additive Model (GAM) that is an extension of the GLM, in which the predictor variable is estimated
using unspecific (non-parametric) functions [94]. Sewe et al. [66] compared the GAM with the Boosting
(GAMBOOST) ensemble model, where GAMBOOST performed better since it reduced the over-fitting
of the model and could handle the data that were non-stationary. Logistic regression was employed to
model binary response variables for example the presence or absence of the infection by [30,34,44,77,86];
Malahlela et al. used a Stepwise Logistic Regression (SLR) [34], which is one of the most commonly
used methods for relating remotely sensed data with disease distribution [95,96] to analyze the spatial
distribution of malaria.

The ARIMA models have been used for analyzing and forecasting time series data and have been
performing well in cases where the data appear to be non-stationary [97]. Furthermore, ARIMA models
seemed well suited for representing temporal patterns, such as seasonality and serial correlation.
Extensions of the ARIMA were utilized by two studies; Kamya et al. used the ARIMAX model [35],
which is a multivariate Autoregressive Integrated Moving Average Model, extending the ARIMA
model by including multiple predictors using current and past values of the independent variables [98]
and [65] used a Seasonal Autoregressive Integrated Moving Average (SARIMA) modeling approach,
including a seasonal component to relate the lagged association of environmental variables with
malaria cases. SARIMA models performed well and could be used in cases where the time series of the
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dependent variables exhibit a seasonal variation. However, the SARIMA models might fail to provide
accurate prediction, if the preceding sequence of the time series exhibit abnormal variations [99].
Furthermore SARIMA were strongly data-driven, requiring a sufficient time series set of historical
data for the model’s parameterization.

Spatial statistics were used to analyze and predict the values associated with spatial or
spatiotemporal phenomena by studies [37,39,45,46,85]. Yue et al. analyzed spatial patterns of dengue
fever by conducting the following spatial analysis methods [85]: point density, average nearest
neighbor, spatial autocorrelation and hot spot analysis, while Bayesian binomial models were utilized
by [37,39,45,85].

Only Ruangudomsakul et al. estimated the dengue outbreak level by utilizing Bayesian Network
(BN) [71]. BN is a probabilistic graphical model that uses Bayesian inference in order to perform
probability computations. The goal of the BN is to model conditional dependence of the variables using
a Directed Acyclic Graph (DAG) [100]. In this study, three BN models were tested, that included expert
knowledge, the Greedy Thick Thinning algorithm (GTT), and a combination of both. After assessing
the performance of the three different models, the model that combined the GTT and expert knowledge
was suggested for forecasting dengue at the different outbreak levels.

Boosted Regression Trees (BRT) could handle a big variety of predictors, complex nonlinear
relationships and missing data and were utilized by [38,41,61,64]; reference [38] used BRT to relate
the high resolution urban LC classes, as well as other satellite derived environmental variables
with the malaria prevalence, while Ashby et al. used BRT to quantify the risk of dengue incidence
comparing the Poisson and the Bernoulli family models [64]. The BRT analysis that was conducted
used disease presence/absence data for Bernoulli family and the actual case counted for the Poisson
family. The results showed that the Poisson family returned a better model fit compared to the
Bernoulli one, with a lower Root Mean Square Error (RMSE) and higher correlation.

The ANNs approach has been used for time series prediction and has been capable of reproducing
and modeling nonlinear processes. ANNs had also the advantage of detecting every possible
interaction between explanatory variables. On the other hand, the ANNs could not explicitly identify
the causal relationships due to the unexplained behavior of the network and have been more prone to
overfit the models in case of inadequate input datasets. Bui et al. tested multiple machine learning
classifiers and ensemble techniques for relating malaria cases with socio-physical parameters and
creating malaria vulnerability maps [76]. ANNs, Support Vector Machine (SVM), J48 and ensemble
techniques using the J48 as a base classifier and Adaboost, Bagging and Random Subspace were used;
the Random Subspace ensemble model performed the best. In the study conducted by Scavuzzo et al.
multiple ML algorithms were examined to model temporal variations of the oviposition in both urban
and rural areas [51]. SVM, ANN multi-layer Perceptron, Decision trees and K-Nearest Neighbor
(KNN) were compared with two linear regression models. KNN performed better than the rest of
the methods. Furthermore, two studies [33,41] utilized the Maximum Entropy (MaxEnt) approach for
predicting the distribution of the vectors’ population. Both studies compared the MaxEnt with other
models; Conley et al. used the BRT method [41] that proved to have a strong agreement in results,
and Arboleda et al. showed that the combination of BRT and Genetic Algorithm for Rule-set Prediction
(GARP) yields the best models [33].

Although various evaluation metrics were used (Appendix A–Tables A1–A3), we tried to
summarize the accuracy of the most commonly used methods in this review; regression methods
that predicted malaria incidence varied widely year by year and showed big spatial heterogeneity
R2 ∼ 0.4–0.9. However, classification methods in vector population prediction yielded a mean model
accuracy of∼ 80% with a Confidence Interval (CI) of 95% and an AUC∼ 0.8. Methods for prediction of
dengue incidence in humans resulted in a mean R2 ∼ 0.35, while mosquito population dynamics were
modeled with R2 ∼ 0.7. Regression models utilized WNV incidence in humans with the dependent
variable showing a high temporal variability over the year (R2 ∼ 0.1–0.7), while early warning
vector population dynamics and their potential transmission risk were modeled with R2 ∼ 0.5.
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Studies used human incidence data that ranged significantly in terms of accuracy, mainly due to
data gaps, non-systematic and non-standardized collection of the input data. The assumption that
the infections were locally acquired might be biased due to population travel from one region to
another. Studies that used entomological data seemed to yield slightly better accuracy. A possible
explanation for this result is that disease incidence is highly correlated with the mosquito density
and therefore models that took the vectors densities as response variables, seemed to result in more
accurate predictions.

4.6. Scalability and Transferability

It is essential to know which methodologies seemed promising and claimed to be easily replicated
in different geographic regions, enabling the realization of predictive systems on regional and national
scales. The review shows that some of the methods used are scalable and transferable in other areas
with similar climatic and MBDs conditions. The automated FARM method used by Buczak et al. [32],
was described as generic and extendable in any geographical area. Rosa et al. [49] applied linear
mixed models and stated that they are transferable and applicable in other areas with similar climate
and land cover conditions, while the principles used in the models’ design could be applied in any
area. Machault et al. [44] used logistic regression analysis in a two-step approach and mentioned that
the equations derived from the final model could be applied in regions with similar morphological
and LU/LC conditions, while Scavuzzo et al. utilized different ML algorithms (SVM, ANNs, K-NN,
decision trees), allowing transferability of the methodology in other regions as well [51]. In contrast,
Sarfraz et al. mentioned that the fuzzy approach could not be extrapolated to a regional scale, since the
environmental and social factors affecting the dengue vector density would vary significantly [43].

Figure 5. Overview of the methods that were considered in this review.
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5. Conclusions

A wide range of both predictors and modeling approaches were found in the literature to forecast
epidemic diseases like malaria, dengue and WNV. Researchers have examined different methods
and have utilized different data sets in order to model the MBDs. Barriers until recently have been
the temporal and the spatial resolution of the data and the data accuracy, as shown in this review;
most of the studies have used data from satellite missions that are at the end of their operation or
are no longer available. Because of this, it is strongly believed that state-of-the-art EO sensors and
satellite systems need to be envisaged for the prediction of MBDs. Actually, with the advent of the
Sentinel data, offered freely by the Copernicus EU program, a new challenge has arisen for the analysis
of big satellite data and the employment of data science approaches. Their enhanced capabilities for
multipurpose environmental monitoring at various scales along with the higher temporal and spectral
resolutions will significantly increase the level of information on predictors such as soil moisture,
vegetation and water bodies and therefore the accuracy of the models. There is a great advantage to
using Sentinel-1 SAR images because of their enhanced azimuth spatial resolution (5 m) and mainly
the ability to be used frequently every 6 days during day and night independently of the atmospheric
and cloud conditions. Li et al. [101] and Catry et al. [102] have successfully used the fusion of optical
and SAR data for generating LU/LC maps to better address the challenge of malaria elimination,
while Catry et al. leveraged SAR data for estimating the extent of wetlands in the Amazon river
basin [103]. Moreover, the Sentinel-2 images (10 m GSD, 6-days revisit time) offer a unique continuity
and high accuracy assessments of indices such as NDVI, EVI, SAVI, NDWI, in complement to the SPOT
and Landsat missions which have been widely used so far. In addition, the need to scale up predictions
and move from the local to regional or continental level, can be ideally addressed if medium resolution
(500m–1km GSD) data from Sentinel-3 are adequately combined with Seninel-1 and Sentinel-2 and
other existing operational HR and VHR satellite missions (SPOT, IKONOS, WorldView, etc.). In this
regard, it is worth mentioning the benefits of using the Global Precipitation Measurement (GPM)
mission of NASA as it offers an enhanced continuity for the TRMM mission, and provides precipitation
data more frequently, with increased accuracy in the spatial resolution of 250 m every 3 h. Last but
not least, the Soil Moisture Active/Passive (SMAP) mission, that has not yet been fully exploited,
exhibits a high potential as it provides global soil moisture assessments at a spatial resolution of 3 km
within 2–3 days revisit time.

Nowadays, new IT technologies allow for high computational performance to perform time-series
analysis of big satellite derived data in order to estimate infectious disease trends enabling more
accurate predictions for MBDs. Despite the progress made in epidemic forecasting there is still the
need to exploit in depth new powerful modeling approaches like artificial intelligence and ensemble
modeling ingesting long-lasting EO observations (space/in situ) and EO derived variables that allow
the identification of highly complex relationships across data and risk factors influencing the MBDs
transmission. However, possessing the ability to unhindered and continuous processing of volumes of
data leveraging on High Performance Computing environment and Data Cubes, will assure geographic
upscaling and transferability of the predictions in larger geographic areas. This is the primary
challenging scientific problem of the days in EO, which in turn, if met, will lead to data driven
decisions of high societal benefit.
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Abbreviations

The following abbreviations are used in this manuscript:

ACTs Artemisinin Combination Therapies
ADDS Africa Data Disseminating Services
AIC Akaike’s Information Criterion
AIRS Atmospheric Infrared Sounder
ANDWI Adapted NDWI Mac Feeters Index
ANNs Artificial Neural Networks
AOI Area of Interest
ARIMA AutoRegressive Integrated Moving Average
ARIMAX Autoregressive Integrated Moving Average with Explanatory Variable
AST Air Surface Temperature
AUC Area under the ROC Curve
AVHRR Advanced Very High Resolution Radiometer
BI Breteau Index
BN Bayesian Network
BRT Boosted Regression Tree
BT Brightness Temperature
CDC Center for Disease Control
CHIRPS Climate Hazards Group InfraRed Precipitation
CI Container Index
CLMM Cumulative Link Mixed Model
DAG Directed Acyclic Graph
DEMs Digital Elevation Models
ECMWF European Centre for Medium-RangeWeather Forecasts
EIP Extrinsic Incubation Period
EO Earth Observation
ET Evapotranspiration
ETa Actual Evapotranspiration
EVI Enhanced Vegetation Index
EWEM Early Warning and Environmental Monitoring Program
EWSs Early Warning Systems
FARM Fuzzy Association Rule
FSCPE Federal State Cooperative Program
GAM Generalized Additive Model
GAMBOOST Generalized Additive Model with Boosting
GAUL Global Administrative Unit Layers
GARP Genetic Algorithm for Rule-set Prediction
GI Green Index
GLM General Linear Mixed
GLR General Linear Regression
GPM Global Precipitation Measurement
GPW Gridded Population of the World
GTT Greedy Thick Thinning
HI Household Index
HR High Resolution
IBGE Brazilian Institute for Geography and Statistics
ICT Information and Communication Technology
INEI Peru National Institute of Statistics and Information 2007
INSA Indian National Satellite System
ITN Insecticide treated
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KNN K-Nearest Neighbor
LMM Linear mixed effects models
LST Land Surface Temperature
LU/LC Land Use/Land Cover
MAE Mean Absolute Error
MaxEnt Maximun Entropy
MBDs Mosquito-Borne Diseases
MR Medium Resolution
ML Machine Learning
MNDWI Modified Normalized Difference Water Index
MSL Mean Seal Level
NDVI Normalized Difference Vegetation Index
NDWI Normalized Difference Water Index
NOAA National Oceanic and Atmospheric Administration
NUTS Nomenclature of Territorial Units for Statistics
ONI Oceanic Niño Index
PCA Principle Component Analysis
PPV Positive Predictive Value
RDT Rapid Diagnostic Tests
RMSE Root Mean Square Error
RMSPE Root Mean Square Percentage Error
p-YI quasi-Yellowness Index
SAR Synthetic Aperture Radar
SAVI Soil-Adjusted Vegetation Index
SES Socio-Economic Status
SDGs Sustainable Development Goals
SLP Sea Level Pressure
SLR Stepwise Logistic Regression
SMAP Soil Moisture Active/Passive
SMAPE Symmetric Mean Absolute Percentage Error
SMN Smoothed and normalized difference vegetation index
SMT Smoothed brightness temperature index
SOI Southern Oscillation Index (SOI)
SRTM Shuttle Radar Topography Mission
SST Sea Surface Temperature
SSTA Sea Surface Temperature Anomaly
SVM Support Vector Machine
TCI Temperature Condition Index
TPI Topographic Position Index
TRMM Tropical Rainfall Measuring Mission
TWI Topographical wetness index
USGS United States Geological Survey
VCI Vegetation Condition Index
VHI Vegetation Health Index
VHR Very High Resolution
WHO World Health Organization
WNND West Nile neuro-invasive disease
WNV West Nile Virus
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Appendix A

Table A1. Summary table of malaria predictive studies included in review AI: Artificial Intelligence, SM: Statistical Method.

Reference Period of
Study

Validation Dependent Variable Number of Independent
Variables/Best

Method Score

[63] 1995–2015 1995–2014: training set 2015:
testing set

Relative Malaria abundances 6 vars (lagged, monthly).
Best: temperature and

rainfall

ANN/AI RMSPE ranged from 18%
to 117%.

[48] 2012–2014 10-fold cross-validation Malaria vector densities 22 landscape and 2214
meteorological variables

Best: Meteorological
variables: rainfall,

evapotranspiration, min and
max temperature Landscape

variable: dense forest
surface, built surface

Multivariate
analysis-CLMM/SM

AUC of mosquito density
classes: “Low” −0.78

“Medium” −0.64 “High”
−0.80

[34] 2005 60% training set 40%
validation set

Probability of malaria
distribution

9 vars. Best: soil-adjusted
vegetation index (SAVI)

Stepwise logistic
regression model/SM

Classification accuracy of
82% at a threshold of 0.9
(buffer distance of 10 km)

[35] 2006 to 2013 site implementation-31/05/2012:
training set

01/06/2012–31/05/2013:
testing set

Weekly number of
laboratory- confirmed

malaria cases

19 vars. Half of the predictor
series were lagged, ranging
from lags of 1 to 52 weeks

Best: Drug treatment,
precipitation

ARIMAX/SM SMAPE ranged from 26%
to 128%

[77] 2012–2015 Monte Carlo cross validation
66.6%: training set 33.3%:

testing set

Household with at least one
member test positive by RDT

11 vars. Best: Distance to the
Mozambique border,

elevation

Multivariate logistic
regression/SM

For the rainy season, the
sensitivity and specificity

of the model were 61%
and 80%, respectively.

The model performance
during the dry season
had better specificity
(96%) but far worse

sensitivity (37%).
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Table A1. Cont.

Reference Period of
Study

Validation Dependent Variable Number of Independent
Variables/Best

Method Score

[37] 2013–2017 Markov chain Monte Carlo
(MCMC) simulation. A
two-chain algorithm for

200,000 iterations with an
initial burn-in period of 5000

iterations

Malaria incidence in each
age group was estimated by

dividing the
district aggregated malaria

cases by the district
age group-specific

population

4 vars, (lagged: (i) current
and previous month, (ii)

current and two previous
months, (iii) current and

three previous months). Best:
LST night, LST day

Bayesian
spatio-temporal

negative binomial
models/Geostatistics

At least one ITN was
associated with a decline
in malaria incidence in

children < years by 73%

[38] 2006–2014 Randomly split 75%:
training set 25%: testing set

Malaria parasite prevalence 10 vars. Best: percentage of
dense/riverine vegetation

Boosted Regression
Tree (BRT)

modeling/AI

Model prediction
accuracy: AUC = 0.89

[88] 1997–2006 A single year was left out
one-by-one from the data set

Malaria incidences 2 vars. Best: TCI OLS, Principal
Component Regression
(PCR) PCR performed

better

PCR: R2 = 0.68 OLS: R2 =
0.43

[65] 2001–2009 2001–2008: training set 2009:
testing set

Monthly tine series of
malaria cases

4 vars lagged (monthly,
yearly). Best: Precipitation
(lag one to three months)

Seasonal autoregressive
integrated moving

average (SARIMA)/SM

Akaine weights greater
than 85%

[40] Asembo and
Gem:

2003–2012
Karemo:

2008–2012

- Number of malaria deaths 3 vars lagged (0–12 weeks)
Best: Precipitation

Distributed Lag Non
Linear Modeling/SM

Precipitation relative risk:
1.68 in Asembo

Vegetation relative risk:
3.4 in Gem
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Table A1. Cont.

Reference Period of
Study

Validation Dependent Variable Number of Independent
Variables/Best

Method Score

[52] 2001–2010 Statistical association Monthly values of Vector
density

5 vars, Best: Land cover, EVI (1) Simple Linear
relations (2) non-linear
multi-variable models
(Gausian, log-logistic,

first to third degree
polynomials and an

inverse second degree
polynomial

equation)/SM

Coupling static land
cover suitability with

dynamic vegetation data
Nash–Sutcliffe model
efficiency (MEF) index

MEF = 0.90

[84] 2009–2012 - Malaria cases 3 vars, lagged (1,2 and 3
months) NDVI (+) and

monthly total precipitation
(+)

Poison
regression—GLMM/SM

T min and NDVI
accounted for 66% (29.9,
36.1 respectively) of the

total variation in malaria
incidence explained by

model

[45] 2002–2004 Randomly selected locations
85%: training set 15%:

testing set

Mosquito density 3 vars lagged up to 3 month
Best: Distance to water

bodies, mean value of NDVI
during the month of

collection and average day
temperature during the

current and the previous
month of collection

Geostatistical zero
inflated binomial and

negative binomial
models/SM

mosquito densities 66%
the zero inflated

spatio-temporal negative
binomial model and 83%

zero inflated spatial
negative binomial model

respectively(CI:95%)

[78] 2012–2013 Different samples of training
and a validation sets were

considered to validate
predictions in every cluster

Variable malaria positive or
negative

6 vars Best: Higher
socioeconomic status

geographically-weighted
regression (GWR)/SM

R2 values per cluster
vary between 32% and

87% with a mean of 63%

[76] 2016–2017 Ten- fold cross validation malaria incidence 10 varsBest: Land Use,
Distance to residence

ANN, SVM, ensemble
techniques (J48)/AI

Best model: Random
Subspace ensemble

model overall accuracy:
94.2%



Remote Sens. 2019, 11, 1862 24 of 40

Table A1. Cont.

Reference Period of
Study

Validation Dependent Variable Number of Independent
Variables/Best

Method Score

[66] 2003–2013 5-k cross validation
2003–2012: training set 2013:

testing set

malaria admissions 5 vars, (lagged 1 to 3 months)
Observed: lag pattern of
rainfall and temperature

GAMBOOST,
GAM/SM

GAMBOOST: R2 = 0.71
GAM: R2 = 0.44

[46] 2001–2004 Randomly selected locations
subset 85% training set 15%

testing test

mosquito density and EIR 6 vars (lagged 1 to 3 months)
Association: Rainfall (−) and

night temperature (−)

Bayesian geostatistical
zero-inflated binomial
and negative binomial

models Bayesian
kriging/SM
Geostatistics

Mosquito density models
58%: zero in-flated

spatio-temporal negative
binomial mode 73%: zero
inflated spatial negative
binomial model(CI:95%)

[39] 2011 Subset of 35 location: testing
set

malaria infected individuals 4 vars, Best: rainfall and LST
day

Bayesian geostatistical
model/Geostatistics

Best model:
Log-predictive density of

−115.12

[42] 2006 The accuracy of the model
predictions was tested using

independent breeding site
data from Nyamanga in 2010

malaria breeding sites 9 vars: TWI (+) logistic regression/SM In the test site AUC for
SRTM: 0.829 AUC for

ASTER: 0.799

Table A2. Summary table of dengue predictive studies included in review AI: Artificial Intelligence, SM: Statistical Method.

Reference Period of
Study

Validation Dependent
Variable

Number of Independent
Variables/Best

Method Score

[32] 2001–2009 Data set was disjoint into
training, validation and test

set

Dengue
incidence

108 variables (lagged: 3
week, 4 weeks and 4–7

weeks ahead)

Fuzzy Association
Rule Mining
(FARM)/AI

4–7 weeks from time of prediction
yielded a PPV = 0.686, PPN = 0.976,
sensitivity: 0.615, specificity: 0.982
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Table A2. Cont.

Reference Period of
Study

Validation Dependent
Variable

Number of Independent
Variables/Best

Method Score

[71] 2007–2015 10-fold cross validation
procedure

Outbreak
level of
dengue

5 vars (lagged weekly): Best:
SMN, SMT, and TCI

Bayesian
Network/SM

Best model: BN model built with an
expert and GTT overall Accuracy:

0.906 and AUC 0.954

[50] 2012–2016 2012–2014: training set
2015–2016: testing set

Ovipositon
(Nr od Eggs)

42 vars (lagged weekly: Best
temperature, humidity and

precipitation

linear multivariate
method/SM

final model with prediction capacity
(R2 = 0.7, p < 0.05) was established.

[44] 2009–2011 Validation was performed
on the same dataset as the
one used to fit the model

Presence of
Aedes aegypti

larvae

8 vars: sparsely vegetated
soil (+)

Two-step approach,
Logistic regression

analysis/SM

84% of the experimental units were
correctly predicted, the percentage
of correctly classified predictions

ranged from 67% to 92% depending
on sections. The positive predictive
value of the two step scenario was
57%, and the negative predictive
value was 90 %. Sensitivity: 57%

Specificity: 90%

[93] 2009–2011 Analytic hierarchy process Larval density 7 vars. Elevation (−),
Temperature 30–35 ◦C (+),

Rainfall 40–81 mm\hr

Fuzzy logic Data
mining and the

decision tree
method/Data
Mining/ AI

Overall accuracy of 80%
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Reference Period of
Study

Validation Dependent
Variable

Number of Independent
Variables/Best

Method Score

[51] 2012–2016 Time series cross validation
procedure (80% training,

20% test)

Oviposition 5 vars (lagged 3 weeks) SVM, ANN, K-NN,
decision trees, Linear

and ridge
regression/SM-AI

KNN, correration between observed
and fitted values 90%

[64] 2012–2014 BRT cross validation (75%
training set, 25% testing set)

Disease
presence/absence

64 vars Best: Population
density and daytime LST

min

Boosted Regression
Trees: (1) Bernoulli

Family
(presence/absence)
(2) Poisson Family

(actual case
counts)/AI

Poisson family better model fit
compared to the Bernoulli, with

lower RMSE and higher correlation.
50% of the relative influence was

due to the population density and
the daytime LST Poisson: Pearson r

0.9 Bernouli Pearson r 0.25

[85] 2014 - Dengue fever
cases

6 vars. Best: Population
density, night and day LST

OLS/SM R2 = 0.320

[33] 2002–2008 Maxent 50% of the data were
used to train the model

Presence of
breeding

vector
populations in

11 vars (lagged 1–3 weeks) Ecological niche
models Maxent and

GARP/AI

Two models Maxent + GARP
Prediction Maxent: 46–83% GARP:
23–61% Combination: 44.3–76.1%

[59] 1992–2011 - Dengue
incidence

7 vars (Monthly and annual
averages, amplitudes, and

anomalies) Strongest
correlation: SST and AST

Logistic
regression/SM

PCA: 4 vars explained 72% of the
variance R = 0.04–0.56 varied over

years

[60] 2006–2015 - Dengue
incidence

rates

7 vars (lagged weekly) Best:
previous dengue cases

Stepwise multiple
regression

analyses/SM

Best model: R2 = 0.42

[61] 1960–2012 Statistic association Probability of
dengue

occurrence

8 vars: Best: rainfall,
temperature and the degree

of urbanization.

BRT/AI AUC: 0.81



Remote Sens. 2019, 11, 1862 27 of 40

Table A3. Summary table of WNV predictive studies included in review AI: Artificial Intelligence, SM: Statistical Method.

Reference Period of
Study

Validation Dependent Variable Number of Independent
Variables/Best

Method Score

[81] 2003–2008 80%: training set 20%:
testing set

WNV incidence for
each US county

5 vars (lagged, monthly).
Best X: precipitation for the

whole 6y period.

Decision trees/ML Annual results were
highly variable:

R = 0–0.84 Tested the
whole 6 years period:

R = 0.86

[49] 2001–2011 - Annual Culex
population at 44 sites

5 vars (lagged window of 12
consecutive weeks). Best X:
(a) days of precipitation at
the start of the year (+) and

(b) distance to rice fields (−)

Linear mixed
models/SM

R2 = 0.46–0.49

[86] 2002–2013 2002–2011: training set
2012–2013: testing set

Probability of WND
human infections

12 vars. Best model:
Temperature anomalies in
July, MNDWI in early June

Multivariate

Logistic
Regression/ML

AUC: 0.819 for 2012
AUC: 0.853 for 2013.

[83] 2010–2012 Statistical association Annual total of WNV
incidences for each

NUTS3 area per 100 K
inhabitants

10 vars (lagged into 9 blocks
of 4 months). Best model:

uses: NDWI (−) in
spring-early summer, T (+)

in summer, days of
precipitation (+), area
covered with irrigated

croplands (+)

linear mixed-effects
models (LMMs)/SM

Best model:
(R2 = 0.32)

[41] 2009 Training set: Locations
recorded as positive for Cx.

pipiens from Egypt (n = 239)
from Lebanon (n = 83)

Testing set: Independent
locations of Cx. pipiens from

Israel (n = 23) from Egypt
(n = 56)

Habitats of Culex
mosquitoes

24 vars. Best X: population
density, seasonality of EVI

Maximum entrory
and BRT/AI

In regions with high
risk: R 0.73–0.77, In

regions with low risk:
R 0.55–0.66
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Table A3. Cont.

Reference Period of
Study

Validation Dependent Variable Number of Independent
Variables/Best

Method Score

[30] 2010–2014 Statistical Association Reported human cases
of WNF/ WNND (441

cases), in weekly blocks

6 vars (lagged 1–3 weeks),
wind speed (−), relatively

humidity (−), air
temperature (+)

Multiple logistic
regression/SM

The odds ratios (OR)
OR wind speed: 0.76
(95% CI) OR relative
humidity: 0.60 (95%
CI), respectively, for

lag 0.

[75] 2004–2010 Drop 1 year at a time The number of
county-level WNV

neuroinvasive cases
and WNV fever cases
(3131 cases), in 8day

blocks

3vars: The models were
sensitive to: the timing of

spring green up (measured
with NDVI), temperature
variability in early spring

and summer (measured with
LST), and moisture

availability from late spring
through early summer
(measured with ETa)

Non-linear
generalized additive
models (GAMs)/SM

R2 0.18 (April)–0.62
(August).

[31] 2010–2012 2010–2011 training set 2012
testing set

Positive human cases 37 vars. Best X: elevation (−)
and distance from water (−)

Two step cluster
analysis/SM

80% of incidences in
2012 occurred in

areas recognized by
the model as

high-risk
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Table A4. Overview of studies that utilized EO derived environmental/climatic variables and epidemiological data * in situ data.

Reference Mosquito-Borne
Disease

Study Area Climatic Zone Epidemiological Data EO Climatic/Environmental Data

[32] Dengue Peru, province of Loreto Tropical Probable and confirmed
cases longer text

Precipitation (TRMM), Temperature (USGS), NDVI
(USGS), EVI (USGS), SOI (NCAR), SSTA (GCMD),

Elevation (NOAA), running water, sanitation, electric
lighting (INEI)

[81] WNV Great Plains region of
the US

Semi arid WNV incidence data
aggregated to the county

level-(I.R.)

NDVI (MODIS), Elevation (SRTM), Land Cover
(NLCD2006 Landsat ETM+), temperature *,

precipitation * (Oregon State University’s PRISM)

[71] Dengue Sisaket province,
Thailand

Tropical Dengue confirmed cases
(I.R.)

SMN, SMT, VCI, TCI, VHI (AVHRR)

[63] Malaria Local Khammam
district, Telangana, India

Semi arid Positive cases without
symptoms

precipitation (TRMM), day and night LST (MODIS),
EVI (MODIS), relative humidity * (MOSDAC)

[86] WNV 1113 districts, Europe Warm humid
continental

Number of districts
reporting WND cases in

humans

Air temperature (NOAA NCEP-NCAR database),
MNDWI (MODIS), Wetlands (GLWD)

[35] Malaria Uganda Different climates,
but is dominated by

tropical savanna
climate

Laboratory confirmed
malaria cases

day and night LST, EVI (MODIS), precipitation
(TRMM)

[77] Malaria region Mutasa District,
Zimbabwe

Humid subtropical RDT-positive
participants-Household RDT

Elevation, slope, aspect (STRM), NDVI, LU
(Landsat-8), distance to streams, distance to main road,

distance to health facility, distance to Mozambique
border

[83] WNV 146 NUTS3 regions,
Europe

Warm humid
continental climate

WNV incidence daily LST, NDVI, NDWI(MODIS), precipitation
(ECA&D), LC, water bodies (OpenStreetMap),

protected areas (IUCN and UNEP), Light at night
(VIIRS)

[37] Malaria Uganda Tropical savanna
climate

Confirmed malaria cases by
RDT–district aggregated
monthly malaria cases

day and night LST (MODIS), NDVI(MODIS), LC,
elevation (SRTM), distance to water, precipitation

(EWEM)
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Reference Mosquito-Borne
Disease

Study Area Climatic Zone Epidemiological Data EO Climatic/Environmental Data

[38] Malaria City of Dar es Salaam,
Tanzania

Tropical RDT test -standardized
parasite prevalence into the

2–10 years age group

LC, NDVI, NDWI (SPOT-6), Distance to inland water,
Percentage dense/riverine vegetation, Percentage
built-up, Elevation (ASTER GDEM), Compound

Topographic Index (CTI) , daily LST(MODIS),
precipitation (RFE 2.0)

[88] Malaria Tripura state India Tropical savanna
climate

Malaria cases-slidy positive
rate and % of malaria

cases/total Nr. of patients
tested

NDVI, BT, (VCI–TCI) ((AVHRR) (NOAA GVI))

[64] Dengue Magdalena River
watershed of Colombia

Tropical Confirmed cases Dengue
Fever

day and night LST (MODIS), EVI (MODIS),
precipitation (TRMM), LU/LC, elevation (SRTM)

[30] WNV Northern Greece Humid subtropical Confirmed laboratory
cases/mosquito traps

Air temperature, relative humidity, soil temperature,
soil water content, wind speed, precipitation

(ERA-Interim)

[75] WNV 66 counties from the
Northern Great Plains

US

Weather varies
throughout the year

with cold winters, hot
summers, and strong

winds

Positive human
case–Logarithm of relative

risk (LRR)

mean LST (MODIS), NDVI (MODIS), ETa
(FEWS-NET)

[65] Malaria District Amhara region
of Ethiopia

Humid subtropical Clinically diagnosed malaria
cases

precipitation (TRMM), eight-day composite LST
(MODIS), NDVI (MODIS), EVI (MODIS), ETa

(MODIS)

[40] Malaria Western Kenya Tropical VA4 method-malaria deaths day LST, NDVI (MODIS), precipitation (TRMM)

[84] Malaria Baringo, Kenya Tropical savanna Clinical malaria cases monthly LST, NDVI (MODIS), precipitation (CHIRPS)

[85] Dengue Guangzhou, China Subtropical coastal
area with an

oceanic subtropical
monsoon climate

Confirmed dengue cases
(clinical and laboratory

diagnosis)

Land type(LT), NDWI (GF-1 satellite), day and night
LST(GF-1 satellite)
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Reference Mosquito-Borne
Disease

Study Area Climatic Zone Epidemiological Data EO Climatic/Environmental Data

[78] Malaria Western Kenya Tropical Malaria prevalence (positive
to antigens) RDT Household
information /odour-baited

MM-X traps

elevation relative to lake (ASTER), distance to lake,
distance to nearest clinic, NDVI (QuickBird), TWI

(QuickBird)

[76] Malaria Province of Dak Nong,
Vietnam

Tropical Malaria incidence Elevation, aspect, slope (Aster Global DEM),
temperature *, precipitation * (meteorological stations),
NDVI (Landsat 8), LU type, distance to road, distance

to residential area, distance to river (Landsat 8)

[53] Dengue State of Selangor,
Malaysia

Tropical rainforest Dengue cases Temperature, precipitation (Weather department
Malaysia), LU (Town Planning Department Malaysia)

[31] WNV Greece Humid subtropical laboratory-confirmed human
cases, wild birds
seroprevalence

temperature (WorldClim), precipitation (WorldClim),
NDVI (WorldClim), elevation, slope, aspect (STRM

DEM), LU (Corine Land Cover 2000 database),
distance to water, distance to nearest village

[66] Malaria Western Kenya Tropical Confirmed malaria cases day and night LST(MODIS), NDVI (MODIS), ET
(MODIS), precipitation (TRMM)

[87] Dengue Singapore Tropical Dengue Cases temperature (NOAA), precipitation (rain gauges)

[82] Dengue South Brazil Tropical Laboratory and clinically
confirmed dengue

cases/Dengue Incidence rate

precipitation (GPCP), ONI (NOAA CPC), mean
surface air temperature (NCEP/NCAR), elevation

(IBGE)

[59] Dengue San Juan, Puerto Rico Tropical island Confirmed dengue cases surface air temperature (maximum and minimum),
precipitation, sea level pressure (SLP), wind speed

(NOAA-National Climatic Data Center), Sea Surface
Temperature (SST), precipitation (AVHRR), Mean Sea

level (MSL) * Sea Level Pressure SLP) *

[39] Malaria Mozambique Tropical Number of Infected children
from 0 to 5 years old

LST (MODIS), precipitation (ADDS/RFE 2.0),
elevation (GDEM/USGS), LU\LC (RapidEye)

[67] Malaria Amhara region Humid subtropical Malaria cases (clinically
diagnosed as well as

confirmed)

Precipitation (TRMM),mean daily LST (MODIS),
NDVI (MODIS), SAVI (MODIS), EVI (MODIS), NDWI

(MODIS)
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Reference Mosquito-Borne
Disease

Study Area Climatic Zone Epidemiological Data EO Climatic/Environmental Data

[60] Dengue State of Yucatan, Mexico Tropical Confirmed dengue fever
cases

Day- and night-time SST (AVHRR), air temperature *,
humidity *, and precipitation * (CONAGUA)

[61] Dengue Worldwide - dengue occurrence records Precipitation * (WorldClim), temperature index, NDVI
(AVHRR)

Table A5. Overview of studies that utilized EO derived environmental/climatic variables and entomological data * in situ data.

Reference Mosquito-Borne
Disease

Study Area Climatic
Zone

Entomological Data EO Climatic/Environmental Data

[48] Malaria Municipality of
Saint-Georges de

l’Oyapock French Guiana

Tropical Mosquito Magnet traps baited with
octenol-weekly number of specimens

Land cover (SPOT-5), precipitation *, temperature *,
relative humidity *, solar radiation *,

evapotranspiration * (Meteo–France weather
station)

[49] WNV Eastern Piemonte, Italy Humid
subtropical

CO2 baited traps-start (ON) and end
(OFF) of mosquito season (threshold

values for population abundance)

daily LST (MODIS), Precipitation * (ECA&D),
NDWI (MODIS), LU\LC (Corine Land Cover),

proximity to mosquito traps and rice fields

[34] Malaria Vhembe District
Municipality in Limpopo
Province of South Africa

North-western
part is semi

arid,
south-eastern
is subtropical

Presence of Malaria agent from
patients that were tested positive for P.
falciparum-presence/pseudo-absence
were generated at buffer distances of

0.5–20 km

NDVI(Landsat 5), NNDWI, GI, SAVI, p-YI,
Moisture index (Landsat 5), aspect (ASTER),

Elevation (SRTM)

[50] Dengue Tartagal City, Argentina Humid
subtropical

Ovitraps–sum of eggs NDVI (MODIS), NDWI (MODIS), LST (MODIS),
precipitation (TRMM)
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Reference Mosquito-Borne
Disease

Study Area Climatic
Zone

Entomological Data EO Climatic/Environmental Data

[44] Dengue Tartane (Martinique,
French Antilles)

Tropical Aedes larvae-positive cases identified
at the experimental units (houses

visited multiple time)

Temperature *, humidity *, precipitation *
(Météo-France stations), NDVI (Geoeye-1), NDWI
(Geoeye-1), ANDWI (Geoeye-1),LU\LC (Geoeye-1),

elevation (Litto3D)

[93] Dengue Phetchabun Province,
Thailand

Tropical Larval density inside and around
residential homes-HI, CI, BI

day LST, night LST (MODIS), precipitation
(TRMM), relative humidity (Aqua/AIRS), elevation

(SRTM), LU\LC (MODIS)

[51] Dengue Tartagal city Northwest
of Argentina in Salta

Province

Humid
subtropical

Vector population–Ovitraps Egg NDVI (MODIS), NDWI (MODIS), day and night
LST(MODIS), local precipitation (TRMM)

[41] WNV Middle East and North
Africa

Arid and
semi-arid

(1) Adult sample-CDC light traps (2)
Larval samples–classical dipping

method form artificial and natural
breeding sites

Temperature (WorldClim), precipitation
(WorldClim) EVI (MODIS), TWI (GLSDEM)

[30] WNV Northern Greece Humid
subtropical

Confirmed laboratory cases/mosquito
traps

Air temperature, relative humidity, soil
temperature, soil water content, wind speed,

precipitation (ERA-Interim)

[52] Malaria southern Portugal Mediterranean CDC light traps/vector density 8 day LST (MODIS), NDVI (MODIS), EVI (MODIS),
NDWI (MODIS), LC (Corine Land Cover 2006)

[33] Dengue Antioquia, Colombia Tropical
rainforest

The basic unit of sampling was the
house, where systematic searches

found water containers with larvae,
pupae, or exuviae/Breteau index
Human cases at least suspected

Landsat band 1–7, NDVI (Landsat 7), elevation,
slope, aspect (SRTM)

[45] Malaria Western Kenya Tropical Mosquito density CDC light traps/
EIR

day and light LST (MODIS), NDVI (MODIS),
precipitation (Meteosat 7), elevation (USGS EROS
Data Center), distance to the nearest water source
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Reference Mosquito-Borne
Disease

Study Area Climatic
Zone

Entomological Data EO Climatic/Environmental Data

[78] Malaria Western Kenya Tropical Malaria prevalence (positive to
antigens) RDT Household

information/odour-baited MM-X
traps

elevation relative to lake (ASTER), distance to lake,
distance to nearest clinic, NDVI (QuickBird), TWI

(QuickBird)

[46] Malaria Nouna district in
Burkina Faso

Sub-Saharan CDC light traps/EIR NDVI, day and night LST (MODIS), precipitation
(ADDS), water bodies (Health Mapper)

[42] Malaria Rusinga Island in
western Kenya

Tropical Vector density slope, aspect, plan curvature, profile curvature,
convergence index, and wetness index, topographic

position index (TPI) (SRTM, ASTER)



Remote Sens. 2019, 11, 1862 35 of 40

References

1. World Health Organization. Mosquito-borne diseases. 2018. Available online: https://www.who.int/
neglected_diseases/vector_ecology/mosquito-borne-diseases/en/ (accessed on 20 November 2018).

2. World Health Organization. Eliminating Malaria. 2016. Available online: https://apps.who.int/iris/bitstream/
handle/10665/205565/WHO_HTM_GMP_2016.3_eng.pdf;jsessionid=F61B110C5B2AE747195723077A15AF09?
sequence=1. (accessed on 30 November 2018).

3. Ford, T.E.; Colwell, R.R.; Rose, J.B.; Morse, S.S.; Rogers, D.J.; Yates, T.L. Using satellite images of
environmental changes to predict infectious disease outbreaks. Emerg. Infect. Dis. 2009, 15, 1341–1346.
[CrossRef] [PubMed]

4. Gubler, D.J. Dengue, Urbanization and Globalization: The Unholy Trinity of the 21(st) Century.
Trop. Med. Health 2011, 39, 3–11. [CrossRef] [PubMed]

5. Bauwens, I.; Franke, J.; Gebreslasie, M. Malareo-Earth observation to support Malaria Control in Southern
Africa. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS),
Munich, Germany, 22–27 July 2012; pp. 7252–7255. [CrossRef]

6. Hay, S.I.; Packer, M.J.; Rogers, D.J. Review article The impact of remote sensing on the study and control of
invertebrate intermediate hosts and vectors for disease. Int. J. Remote. Sens. 1997, 18, 2899–2930. [CrossRef]

7. Kalluri, S.; Gilruth, P.; Rogers, D.; Szczur, M. Surveillance of arthropod vector-borne infectious diseases
using remote sensing techniques: A review. PLoS Pathog. 2007, 3, 1361–1371. [CrossRef] [PubMed]

8. Kazansky, Y.; Wood, D.; Sutherlun, J. The current and potential role of satellite remote sensing in the
campaign against malaria. Acta Astronaut. 2016, 121, 292–305. [CrossRef]

9. Pixalytics Ltd. 2016. How many Earth observation satellites are in space in 2018?. 2018. Available online:
https://www.pixalytics.com/eo-satellites-in-space-2018/ (accessed on 4 December 2018).

10. Ma, Y.; Wu, H.; Wang, L.; Huang, B.; Ranjan, R.; Zomaya, A.; Jie, W. Remote sensing big data computing:
Challenges and opportunities. Future Gener. Comput. Syst. 2014. [CrossRef]

11. Viana, J.; Santos, J.V.; Neiva, R.M.; Souza, J.; Duarte, L.; Teodoro, A.C.; Freitas, A. Remote sensing in human
health: A 10-year bibliometric analysis. Remote Sens. 2017, 9, 1225. [CrossRef]

12. SDGs: Sustainable Development Knowledge Platform. Available online: https://sustainabledevelopment.
un.org/sdgs (accessed on 28 February 2019).

13. World Health Organization. Malaria. 2019. Available online: https://www.who.int/news-room/fact-
sheets/detail/malaria (accessed on 30 April 2019).

14. Sadoine, M.L.; Smargiassi, A.; Ridde, V.; Tusting, L.S.; Zinszer, K. The associations between malaria,
interventions, and the environment: A systematic review and meta-analysis. Malar. J. 2018, 17, 73. [CrossRef]

15. Paaijmans, K.P.; Read, A.F.; Thomas, M.B. Understanding the link between malaria risk and climate.
Proc. Natl. Acad. Sci. USA 2009, 106, 13844–13849. [CrossRef]

16. Rogers, D.J.; Randolph, S.E.; Snow, R.W.; Hay, S.I. Satellite imagery in the study and forecast of malaria.
Nature 2002, 415, 710–715. [CrossRef]

17. Paaijmans, K.P.; Wandago, M.O.; Githeko, A.K.; Takken, W. Unexpected High Losses of Anopheles gambiae
Larvae Due to Rainfall. PLoS ONE 2007, 2, e1146. [CrossRef] [PubMed]

18. Whitehorn, J.; Simmons, C.P. The pathogenesis of dengue. Vaccine 2011, 29, 7221–7228. [CrossRef] [PubMed]
19. WHO. What Is Dengue? WHO: Geneva, Switzerland, 2017.
20. Barbazan, P.; Guiserix, M.; Boonyuan, W.; Tuntaprasart, W.; Pontier, D.; Gonzalez, J.P. Modelling the effect of

temperature on transmission of dengue. Med. Vet. Entomol. 2010, 24, 66–73. [CrossRef] [PubMed]
21. Stewart Ibarra, A.M.; Ryan, S.J.; Beltrán, E.; Mejía, R.; Silva, M.; Muñoz, Á. Dengue Vector Dynamics

(Aedes aegypti) Influenced by Climate and Social Factors in Ecuador: Implications for Targeted Control.
PLoS ONE 2013, 8, e78263. [CrossRef] [PubMed]

22. Pontes, R.J.; Freeman, J.; Oliveira-Lima, J.W.; Hodgson, J.C.; Spielman, A. Vector densities that potentiate
dengue outbreaks in a Brazilian city. Am. J. Trop. Med. Hyg. 2000, 62, 378–383. [CrossRef] [PubMed]

23. World Health Organization. West Nile Virus. 2018. Available online: http://www.who.int/news-room/
fact-sheets/detail/west-nile-virus (accessed on 3 December 2018).

24. Reisen, W.K. Ecology of West Nile virus in North America. Viruses 2013, 5, 2079–2105. [CrossRef] [PubMed]

https://www.who.int/neglected_diseases/vector_ecology/mosquito-borne-diseases/en/
https://www.who.int/neglected_diseases/vector_ecology/mosquito-borne-diseases/en/
https://apps.who.int/iris/bitstream/handle/10665/205565/WHO_HTM_GMP_2016.3_eng.pdf;jsessionid=F61B110C5B2AE747195723077A15AF09?sequence=1.
https://apps.who.int/iris/bitstream/handle/10665/205565/WHO_HTM_GMP_2016.3_eng.pdf;jsessionid=F61B110C5B2AE747195723077A15AF09?sequence=1.
https://apps.who.int/iris/bitstream/handle/10665/205565/WHO_HTM_GMP_2016.3_eng.pdf;jsessionid=F61B110C5B2AE747195723077A15AF09?sequence=1.
http://dx.doi.org/10.3201/eid/1509.081334
http://www.ncbi.nlm.nih.gov/pubmed/19788799
http://dx.doi.org/10.2149/tmh.2011-S05
http://www.ncbi.nlm.nih.gov/pubmed/22500131
http://dx.doi.org/10.1109/IGARSS.2012.6351988
http://dx.doi.org/10.1080/014311697217125
http://dx.doi.org/10.1371/journal.ppat.0030116
http://www.ncbi.nlm.nih.gov/pubmed/17967056
http://dx.doi.org/10.1016/j.actaastro.2015.09.021
 https://www.pixalytics.com/eo-satellites-in-space-2018/
http://dx.doi.org/10.1016/j.future.2014.10.029
http://dx.doi.org/10.3390/rs9121225
https://sustainabledevelopment.un.org/sdgs
https://sustainabledevelopment.un.org/sdgs
https://www.who.int/news-room/fact-sheets/detail/malaria
https://www.who.int/news-room/fact-sheets/detail/malaria
http://dx.doi.org/10.1186/s12936-018-2220-x
http://dx.doi.org/10.1073/pnas.0903423106
http://dx.doi.org/10.1038/415710a
http://dx.doi.org/10.1371/journal.pone.0001146
http://www.ncbi.nlm.nih.gov/pubmed/17987125
http://dx.doi.org/10.1016/j.vaccine.2011.07.022
http://www.ncbi.nlm.nih.gov/pubmed/21781999
http://dx.doi.org/10.1111/j.1365-2915.2009.00848.x
http://www.ncbi.nlm.nih.gov/pubmed/20377733
http://dx.doi.org/10.1371/journal.pone.0078263
http://www.ncbi.nlm.nih.gov/pubmed/24324542
http://dx.doi.org/10.4269/ajtmh.2000.62.378
http://www.ncbi.nlm.nih.gov/pubmed/11037781
http://www.who.int/news-room/fact-sheets/detail/west-nile-virus
http://www.who.int/news-room/fact-sheets/detail/west-nile-virus
http://dx.doi.org/10.3390/v5092079
http://www.ncbi.nlm.nih.gov/pubmed/24008376


Remote Sens. 2019, 11, 1862 36 of 40

25. Bertolotti, L.; Kitron, U.D.; Walker, E.D.; Ruiz, M.O.; Brawn, J.D.; Loss, S.R.; Hamer, G.L.; Goldberg, T.L.
Fine-scale genetic variation and evolution of West Nile Virus in a transmission “hot spot” in suburban
Chicago, USA. Virology 2008, 374, 381–389. [CrossRef]

26. Dohm, D.J.; O’guinn, M.L.; Turell, M.J. Effect of Environmental Temperature on the Ability of Culex pipiens
(Diptera: Culicidae) to Transmit West Nile Virus. J. Med. Entomol. 2002, 39, 221–225. [CrossRef]

27. Munn, Z.; Peters, M.D.J.; Stern, C.; Tufanaru, C.; McArthur, A.; Aromataris, E. Systematic review or
scoping review? Guidance for authors when choosing between a systematic or scoping review approach.
BMC Med. Res. Methodol. 2018, 18, 143. [CrossRef]

28. Arksey, H.; O’Malley, L. Scoping studies: Towards a methodological framework. Int. J. Soc. Res. Methodol.
2005, 8, 19–32. [CrossRef]

29. Levac, D.; Colquhoun, H.; O’Brien, K.K. Scoping studies: Advancing the methodology. Implement. Sci. 2010,
5, 69. [CrossRef] [PubMed]

30. Stilianakis, N.I.; Syrris, V.; Petroliagkis, T.; Pärt, P.; Gewehr, S.; Kalaitzopoulou, S.; Mourelatos, S.; Baka, A.;
Pervanidou, D.; Vontas, J.; et al. Identification of Climatic Factors Affecting the Epidemiology of Human
West Nile Virus Infections in Northern Greece. PLoS ONE 2016, 11, e0161510. [CrossRef] [PubMed]

31. Valiakos, G.; Papaspyropoulos, K.; Giannakopoulos, A.; Birtsas, P.; Tsiodras, S.; Hutchings, M.R.; Spyrou, V.;
Pervanidou, D.; Athanasiou, L.V.; Papadopoulos, N.; et al. Use of Wild Bird Surveillance, Human Case Data
and GIS Spatial Analysis for Predicting Spatial Distributions of West Nile Virus in Greece. PLoS ONE 2014,
9, e96935. [CrossRef] [PubMed]

32. Buczak, A.L.; Koshute, P.T.; Babin, S.M.; Feighner, B.H.; Lewis, S.H. A data-driven epidemiological prediction
method for dengue outbreaks using local and remote sensing data. BMC Med. Inform. Decis. Mak. 2012, 12.
[CrossRef] [PubMed]

33. Arboleda, S.; Jaramillo-o, N.; Peterson, A.T. Spatial and temporal dynamics of Aedes aegypti larval sites in
Bello, Colombia. J. Vector Ecol. 2012, 37, 37–48. [CrossRef]

34. Malahlela, O.E.; Olwoch, J.M.; Adjorlolo, C. Evaluating Efficacy of Landsat-Derived Environmental
Covariates for Predicting Malaria Distribution in Rural Villages of Vhembe District, South Africa. EcoHealth
2018, 15, 23–40. [CrossRef]

35. Kamya, M.R.; Dorsey, G.; Kigozi, R.; Brownstein, J.S.; Charland, K.; Buckeridge, D.L.; Brewer, T.F.; Zinszer, K.
Forecasting malaria in a highly endemic country using environmental and clinical predictors. Malar. J. 2015,
14, 245. [CrossRef]

36. Kanyangarara, M.; Mamini, E.; Mharakurwa, S.; Munyati, S.; Gwanzura, L.; Kobayashi, T.; Shields, T.;
Mullany, L.C.; Mutambu, S.; Mason, P.R.; et al. High-resolution plasmodium falciparum malaria risk
mapping in Mutasa District, Zimbabwe: Implications for regaining control. Am. J. Trop. Med. Hyg. 2016,
95, 141–147. [CrossRef]

37. Ssempiira, J.; Kissa, J.; Nambuusi, B.; Mukooyo, E.; Opigo, J.; Makumbi, F.; Kasasa, S.; Vounatsou, P.
Interactions between climatic changes and intervention effects on malaria spatio-temporal dynamics in
Uganda. Parasite Epidemiol. Control 2018, 3, e00070. [CrossRef]

38. Kabaria, C.W.; Molteni, F.; Mandike, R.; Chacky, F.; Noor, A.M.; Snow, R.W.; Linard, C. Mapping intra-urban
malaria risk using high resolution satellite imagery: A case study of Dar es Salaam. Int. J. Health Geogr. 2016,
15, 26. [CrossRef]

39. Giardina, F.; Franke, J.; Vounatsou, P. Geostatistical modelling of the malaria risk in Mozambique: Effect of
the spatial resolution when using remotely-sensed imagery. Geospat. Health 2015, 10, 232–238. [CrossRef]
[PubMed]

40. Sewe, M.O.; Ahlm, C.; Rocklöv, J. Remotely sensed environmental conditions and malaria mortality in three
malaria endemic regions in western kenya. PLoS ONE 2016, 11, e0154204. [CrossRef] [PubMed]

41. Conley, A.K.; Fuller, D.O.; Haddad, N.; Hassan, A.N.; Gad, A.M.; Beier, J.C. Modeling the distribution of the
West Nile and Rift Valley Fever vector Culex pipiens in arid and semi-arid regions of the Middle East and
North Africa. Parasites Vectors 2014, 7, 289. [CrossRef] [PubMed]

42. Nmor, J.C.; Sunahara, T.; Goto, K.; Futami, K.; Sonye, G.; Akweywa, P.; Dida, G.; Minakawa, N.
Topographic models for predicting malaria vector breeding habitats: Potential tools for vector control
managers. Parasites Vectors 2013, 6, 14. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.virol.2007.12.040
http://dx.doi.org/10.1603/0022-2585-39.1.221
http://dx.doi.org/10.1186/s12874-018-0611-x
http://dx.doi.org/10.1080/1364557032000119616
http://dx.doi.org/10.1186/1748-5908-5-69
http://www.ncbi.nlm.nih.gov/pubmed/20854677
http://dx.doi.org/10.1371/journal.pone.0161510
http://www.ncbi.nlm.nih.gov/pubmed/27631082
http://dx.doi.org/10.1371/journal.pone.0096935
http://www.ncbi.nlm.nih.gov/pubmed/24806216
http://dx.doi.org/10.1186/1472-6947-12-124
http://www.ncbi.nlm.nih.gov/pubmed/23126401
http://dx.doi.org/10.1111/j.1948-7134.2012.00198.x
http://dx.doi.org/10.1007/s10393-017-1307-0
http://dx.doi.org/10.1186/s12936-015-0758-4
http://dx.doi.org/10.4269/ajtmh.15-0865
http://dx.doi.org/10.1016/j.parepi.2018.e00070
http://dx.doi.org/10.1186/s12942-016-0051-y
http://dx.doi.org/10.4081/gh.2015.333
http://www.ncbi.nlm.nih.gov/pubmed/26618310
http://dx.doi.org/10.1371/journal.pone.0154204
http://www.ncbi.nlm.nih.gov/pubmed/27115874
http://dx.doi.org/10.1186/1756-3305-7-289
http://www.ncbi.nlm.nih.gov/pubmed/24962735
http://dx.doi.org/10.1186/1756-3305-6-14
http://www.ncbi.nlm.nih.gov/pubmed/23324389


Remote Sens. 2019, 11, 1862 37 of 40

43. Sarfraz, M.S.; Tripathi, N.K.; Faruque, F.S.; Bajwa, U.I.; Kitamoto, A.; Souris, M. Mapping urban and
peri-urban breeding habitats of Aedes mosquitoes using a fuzzy analytical hierarchical process based on
climatic and physical parameters. Geospat. Health 2014, 8, S685–S697. [CrossRef] [PubMed]

44. Machault, V.; Yébakima, A.; Etienne, M.; Vignolles, C.; Palany, P.; Tourre, Y.; Guérécheau, M.; Lacaux, J.P.
Mapping Entomological Dengue Risk Levels in Martinique Using High-Resolution Remote-Sensing
Environmental Data. ISPRS Int. J. -Geo-Inf. 2014, 3, 1352–1371. [CrossRef]

45. Amek, N.; Bayoh, N.; Hamel, M.; Lindblade, K.A.; Gimnig, J.E.; Odhiambo, F.; Laserson, K.F.; Slutsker, L.;
Smith, T.; Vounatsou, P. Spatial and temporal dynamics of malaria transmission in rural Western Kenya.
Parasites Vectors 2012, 5, 86. [CrossRef] [PubMed]

46. Diboulo, E.; Sié, A.; Diadier, D.A.; Voules, D.A.K.; Yé, Y.; Vounatsou, P. Bayesian variable selection in
modelling geographical heterogeneity in malaria transmission from sparse data: An application to Nouna
Health and Demographic Surveillance System (HDSS) data, Burkina Faso. Parasites Vectors 2015, 8, 118.
[CrossRef] [PubMed]

47. Shaukat, A.M.; Breman, J.G.; McKenzie, F.E. Using the entomological inoculation rate to assess the impact of
vector control on malaria parasite transmission and elimination. Malar. J. 2010, 9, 122. [CrossRef]

48. Adde, A.; Roux, E.; Mangeas, M.; Dessay, N.; Nacher, M.; Dusfour, I.; Girod, R.; Briolant, S.
Dynamical mapping of anopheles darlingi densities in a residual malaria transmission area of French
guiana by using remote sensing and meteorological data. PLoS ONE 2016, 11, e0164685. [CrossRef]

49. Rosà, R.; Marini, G.; Bolzoni, L.; Neteler, M.; Metz, M.; Delucchi, L.; Chadwick, E.; Balbo, L.; Mosca, A.;
Giacobini, M.; et al. Early warning of West Nile virus mosquito vector: Climate and land use models
successfully explain phenology and abundance of Culex pipiens mosquitoes in north-western Italy.
Parasites Vectors 2014, 7. [CrossRef] [PubMed]

50. German, A.; Espinosa, M.O.; Abril, M.; Scavuzzo, C.M. Exploring satellite based temporal forecast modelling
of Aedes aegypti oviposition from an operational perspective. Remote. Sens. Appl. Soc. Environ. 2018,
11, 231–240. [CrossRef]

51. Scavuzzo, J.M.; Trucco, F.; Espinosa, M.; Tauro, C.B.; Abril, M.; Scavuzzo, C.M.; Frery, A.C. Modeling Dengue
vector population using remotely sensed data and machine learning. Acta Trop. 2018, 185, 167–175. [CrossRef]
[PubMed]

52. Benali, A.; Nunes, J.P.; Freitas, F.B.; Sousa, C.A.; Novo, M.T.; Lourenço, P.M.; Lima, J.C.; Seixas, J.;
Almeida, A.P. Satellite-derived estimation of environmental suitability for malaria vector development in
Portugal. Remote. Sens. Environ. 2014, 145, 116–130. [CrossRef]

53. Mokraoui, L.; Noor, N.; Abdullah, A. Developing dengue index through the integration of crowdsourcing
approach (X-Waba). IOP Conf. Ser. Earth Environ. Sci. 2018, 169. [CrossRef]

54. Lessler, J.; Azman, A.S.; Grabowski, M.K.; Salje, H.; Rodriguez-Barraquer, I. Trends in the Mechanistic and
Dynamic Modeling of Infectious Diseases. Curr. Epidemiol. Rep. 2016, 3, 212–222. [CrossRef]

55. Parham, P.E.; Waldock, J.; Christophides, G.K.; Hemming, D.; Agusto, F.; Evans, K.J.; Fefferman, N.; Gaff, H.;
Gumel, A.; Ladeau, S.; et al. Climate, environmental and socio-economic change: Weighing up the balance
in vector-borne disease transmission. Philos. Trans. R. Soc. Lond. Ser. Biol. Sci. 2015, 370, 20130551. [CrossRef]
[PubMed]

56. Freitas, S.C.; Trigo, I.F.; Macedo, J.; Barroso, C.; Silva, R.; Perdigão, R. Land surface temperature from
multiple geostationary satellites. Int. J. Remote Sens. 2013, 34, 3051–3068. [CrossRef]

57. Weiss, D.J.; Bhatt, S.; Mappin, B.; Van Boeckel, T.P.; Smith, D.L.; Hay, S.I.; Gething, P.W. Air temperature
suitability for Plasmodium falciparum malaria transmission in Africa 2000–2012: A high-resolution
spatiotemporal prediction. Malar. J. 2014, 13, 171. [CrossRef]

58. Albergel, C.; Dutra, E.; Muñoz-Sabater, J.; Haiden, T.; Balsamo, G.; Beljaars, A.; Isaksen, L.; de Rosnay, P.;
Sandu, I.; Wedi, N. Soil temperature at ECMWF: An assessment using ground-based observations.
J. Geophys. Res. 2015, 120, 1361–1373.[CrossRef]

59. Méndez-Lázaro, P.; Muller-Karger, F.E.; Otis, D.; McCarthy, M.J.; Peña-Orellana, M.; Méndez-Lázaro, P.;
Muller-Karger, F.E.; Otis, D.; McCarthy, M.J.; Peña-Orellana, M. Assessing Climate Variability Effects on
Dengue Incidence in San Juan, Puerto Rico. Int. J. Environ. Res. Public Health 2014, 11, 9409–9428. [CrossRef]
[PubMed]

http://dx.doi.org/10.4081/gh.2014.297
http://www.ncbi.nlm.nih.gov/pubmed/25599639
http://dx.doi.org/10.3390/ijgi3041352
http://dx.doi.org/10.1186/1756-3305-5-86
http://www.ncbi.nlm.nih.gov/pubmed/22541138
http://dx.doi.org/10.1186/s13071-015-0679-7
http://www.ncbi.nlm.nih.gov/pubmed/25888970
http://dx.doi.org/10.1186/1475-2875-9-122
http://dx.doi.org/10.1371/journal.pone.0164685
http://dx.doi.org/10.1186/1756-3305-7-269
http://www.ncbi.nlm.nih.gov/pubmed/24924622
http://dx.doi.org/10.1016/j.rsase.2018.07.006
http://dx.doi.org/10.1016/j.actatropica.2018.05.003
http://www.ncbi.nlm.nih.gov/pubmed/29777650
http://dx.doi.org/10.1016/j.rse.2014.01.014
http://dx.doi.org/10.1088/1755-1315/169/1/012058
http://dx.doi.org/10.1007/s40471-016-0078-4
http://dx.doi.org/10.1098/rstb.2013.0551
http://www.ncbi.nlm.nih.gov/pubmed/25688012
http://dx.doi.org/10.1080/01431161.2012.716925
http://dx.doi.org/10.1186/1475-2875-13-171
http://dx.doi.org/10.1002/2014JD022505
http://dx.doi.org/10.3390/ijerph110909409
http://www.ncbi.nlm.nih.gov/pubmed/25216253


Remote Sens. 2019, 11, 1862 38 of 40

60. Laureano-Rosario, A.E.; Garcia-Rejon, J.E.; Gomez-Carro, S.; Farfan-Ale, J.A.; Muller-Karger, F.E.
Modelling dengue fever risk in the State of Yucatan, Mexico using regional-scale satellite-derived sea
surface temperature. Acta Trop. 2017, 172, 50–57. [CrossRef] [PubMed]

61. Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.;
Hoen, A.G.; Sankoh, O.; et al. The global distribution and burden of dengue. Nature 2013, 496, 504–507.
[CrossRef] [PubMed]

62. Benedum, C.M.; Seidahmed, O.M.E.; Eltahir, E.A.B.; Markuzon, N. Statistical modeling of the effect of rainfall
flushing on dengue transmission in Singapore. PLOS Neglected Trop. Dis. 2018, 12, e0006935. [CrossRef]
[PubMed]

63. Thakur, S.; Dharavath, R. Artificial neural network based prediction of malaria abundances using big data:
A knowledge capturing approach. Clin. Epidemiol. Glob. Health 2018, 7, 121–126. [CrossRef]

64. Ashby, J.; Moreno-Madriñán, M.M.J.; Yiannoutsos, C.T.C.; Stanforth, A. Niche modeling of dengue fever
using remotely sensed environmental factors and boosted regression trees. Remote. Sens. 2017, 9. [CrossRef]

65. Midekisa, A.; Senay, G.; Henebry, G.M.; Semuniguse, P.; Wimberly, M.C. Remote sensing-based time series
models for malaria early warning in the highlands of Ethiopia. Malar. J. 2012, 11, 165. [CrossRef] [PubMed]

66. Sewe, M.O.; Tozan, Y.; Ahlm, C.; Rocklöv, J. Using remote sensing environmental data to forecast malaria
incidence at a rural district hospital in Western Kenya. Sci. Rep. 2017, 7, 2589. [CrossRef]

67. Merkord, C.L.; Liu, Y.; Mihretie, A.; Gebrehiwot, T.; Awoke, W.; Bayabil, E.; Henebry, G.M.; Kassa, G.T.;
Lake, M.; Wimberly, M.C. Integrating malaria surveillance with climate data for outbreak detection and
forecasting: The EPIDEMIA system. Malar. J. 2017, 16, 1–89. [CrossRef]

68. Pettorelli, N.; Ryan, S.; Mueller, T.; Bunnefeld, N.; Jedrzejewska, B.; Lima, M.; Kausrud, K. The Normalized
Difference Vegetation Index (NDVI): Unforeseen successes in animal ecology. Clim. Res. 2011, 46, 15–27.
[CrossRef]

69. Liu, J.; Chen, X.P. Relationship of Remote Sensing Normalized Differential Vegetation Index to Anopheles
Density and Malaria Incidence Rate. Biomed. Environ. Sci. 2006, 19, 130–132. [PubMed]

70. Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.; Gao, X.; Ferreira, L. Overview of the radiometric and
biophysical performance of the MODIS vegetation indices. Remote. Sens. Environ. 2002, 83, 195–213.
[CrossRef]

71. Ruangudomsakul, C.; Duangsin, A.; Kerdprasop, K.; Kerdprasop, N. Application of Remote Sensing Data
for Dengue Outbreak Estimation Using Bayesian Network. Int. J. Mach. Learn. Comput. 2018, 8. [CrossRef]

72. Chabot-Couture, G.; Nigmatulina, K.; Eckhoff, P. An environmental data set for vector-borne disease
modeling and epidemiology. PLoS ONE 2014, 9. [CrossRef] [PubMed]

73. Cao, G.; Han, D.; Song, X. Evaluating actual evapotranspiration and impacts of groundwater storage change
in the North China Plain. Hydrol. Process. 2014, 28, 1797–1808. [CrossRef]

74. Tsouni, A.; Kontoes, C.; Koutsoyiannis, D.; Elias, P.; Mamassis, N. Estimation of Actual Evapotranspiration
by Remote Sensing: Application in Thessaly Plain, Greece. Sensors 2008, 8, 3586–3600. [CrossRef] [PubMed]

75. Chuang, T.W.; Wimberly, M. Remote Sensing of Climatic Anomalies and West Nile Virus Incidence in the
Northern Great Plains of the United States. PLoS ONE 2012, 7. [CrossRef]

76. Bui, Q.T.; Nguyen, Q.H.; Pham, V.M.; Pham, M.H.; Tran, A.T. Understanding spatial variations of malaria in
Vietnam using remotely sensed data integrated into GIS and machine learning classifiers. Geocarto Int. 2018,
6049, 1–15. [CrossRef]

77. Kanyangarara, M.; Mamini, E.; Mharakurwa, S.; Munyati, S.; Gwanzura, L.; Kobayashi, T.; Shields, T.;
Mullany, L.C.; Mutambu, S.; Mason, P.R.; et al. Reduction in malaria incidence following indoor residual
spraying with actellic 300 CS in a setting with pyrethroid resistance: Mutasa District, Zimbabwe. PLoS ONE
2016, 11, e0151971. [CrossRef]

78. Homan, T.; Maire, N.; Hiscox, A.; Di Pasquale, A.; Kiche, I.; Onoka, K.; Mweresa, C.; Mukabana, W.R.;
Ross, A.; Smith, T.A.; et al. Spatially variable risk factors for malaria in a geographically heterogeneous
landscape, western Kenya: An explorative study. Malar. J. 2016, 15, 1. [CrossRef]

79. Atieli, H.E.; Zhou, G.; Lee, M.C.; Kweka, E.J.; Afrane, Y.; Mwanzo, I.; Githeko, A.K.; Yan, G. Topography as a
modifier of breeding habitats and concurrent vulnerability to malaria risk in the western Kenya highlands.
Parasites Vectors 2011, 4, 241. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.actatropica.2017.04.017
http://www.ncbi.nlm.nih.gov/pubmed/28450208
http://dx.doi.org/10.1038/nature12060
http://www.ncbi.nlm.nih.gov/pubmed/23563266
http://dx.doi.org/10.1371/journal.pntd.0006935
http://www.ncbi.nlm.nih.gov/pubmed/30521523
http://dx.doi.org/10.1016/j.cegh.2018.03.001
http://dx.doi.org/10.3390/rs9040328
http://dx.doi.org/10.1186/1475-2875-11-165
http://www.ncbi.nlm.nih.gov/pubmed/22583705
http://dx.doi.org/10.1038/s41598-017-02560-z
http://dx.doi.org/10.1186/s12936-017-1735-x
http://dx.doi.org/10.3354/cr00936
http://www.ncbi.nlm.nih.gov/pubmed/16827184
http://dx.doi.org/10.1016/S0034-4257(02)00096-2
http://dx.doi.org/10.18178/ijmlc.2018.8.4.718
http://dx.doi.org/10.1371/journal.pone.0094741
http://www.ncbi.nlm.nih.gov/pubmed/24755954
http://dx.doi.org/10.1002/hyp.9732
http://dx.doi.org/10.3390/s8063586
http://www.ncbi.nlm.nih.gov/pubmed/27879894
http://dx.doi.org/10.1371/journal.pone.0046882
http://dx.doi.org/10.1080/10106049.2018.1478890
http://dx.doi.org/10.1371/journal.pone.0151971
http://dx.doi.org/10.1186/s12936-015-1044-1
http://dx.doi.org/10.1186/1756-3305-4-241
http://www.ncbi.nlm.nih.gov/pubmed/22196078


Remote Sens. 2019, 11, 1862 39 of 40

80. Watts, A.G.; Miniota, J.; Joseph, H.A.; Brady, O.J.; Kraemer, M.U.G.; Grills, A.W.; Morrison, S.; Esposito, D.H.;
Nicolucci, A.; German, M.; et al. Elevation as a proxy for mosquito-borne Zika virus transmission in the
Americas. PLoS ONE 2017, 12, e0178211. [CrossRef]

81. Young, S.G.; Tullis, J.A.; Cothren, J. A remote sensing and GIS-assisted landscape epidemiology approach to
West Nile virus. Appl. Geogr. 2013, 45, 241–249. [CrossRef]

82. Lowe, R.; Bailey, T.C.; Stephenson, D.B.; Jupp, T.E.; Graham, R.J.; Barcellos, C.; Carvalho, M.S.
The development of an early warning system for climate-sensitive disease risk with a focus on dengue
epidemics in Southeast Brazil. Stat. Med. 2013, 32, 864–883. [CrossRef] [PubMed]

83. Marcantonio, M.; Rizzoli, A.; Metz, M.; Rosà, R.; Marini, G.; Chadwick, E.; Neteler, M. Identifying the
Environmental Conditions Favouring West Nile Virus Outbreaks in Europe. PLoS ONE 2015, 10, e0121158.
[CrossRef] [PubMed]

84. Amadi, J.A.; Olago, D.O.; Ong’amo, G.O.; Oriaso, S.O.; Nanyingi, M.; Nyamongo, I.K.; Estambale, B.B.
Sensitivity of vegetation to climate variability and its implications for malaria risk in Baringo, Kenya.
PLoS ONE 2018, 13. [CrossRef]

85. Yue, Y.; Sun, J.; Liu, X.; Ren, D.; Liu, Q.; Xiao, X.; Lu, L. Spatial analysis of dengue fever and exploration of
its environmental and socio-economic risk factors using ordinary least squares: A case study in five districts
of Guangzhou City, China, 2014. Int. J. Infect. Dis. 2018, 75, 39–48. [CrossRef]

86. Tran, A.; Sudre, B.; Paz, S.; Rossi, M.; Desbrosse, A.; Chevalier, V.; Semenza, J. Environmental predictors of
West Nile fever risk in Europe. Int. J. Health Geogr. 2014, 13. [CrossRef]

87. Hii, Y.L.; Zhu, H.; Ng, N.; Ng, L.C.; Rocklöv, J. Forecast of Dengue Incidence Using Temperature and Rainfall.
PLoS Neglected Trop. Dis. 2012, 6, e1908. [CrossRef]

88. Nizamuddin, M.; Kogan, F.; Dhiman, R.; Guo, W.; Roytman, L. Modeling and Forecasting Malaria in Tripura,
INDIA using NOAA/AVHRR-Based Vegetation Health Indices. Int. J. Remote. Sens. Appl. 2013, 3, 108–116.

89. Quintero, J.; Carrasquilla, G.; Suárez, R.; González, C.; Olano, V.A. An ecosystemic approach to evaluating
ecological, socioeconomic and group dynamics affecting the prevalence of Aedes aegypti in two Colombian
towns. Cadernos de Saúde Pública 2009, 25, s93–s103. [CrossRef] [PubMed]

90. Quintero, J.; Brochero, H.; Manrique-Saide, P.; Barrera-Pérez, M.; Basso, C.; Romero, S.; Caprara, A.;
De Lima Cunha, J.C.; Beltrán - Ayala, E.; Mitchell-Foster, K.; et al. Ecological, biological and social
dimensions of dengue vector breeding in five urban settings of Latin America: A multi-country study.
BMC Infect. Dis. 2014, 14, 38. [CrossRef]

91. Ayala, R.G.; Estrugo, A. Assessing the Effects of Climate and Socioeconomic Factors on Vulnerability to Vector-Borne
Diseases in Latin America; Inter-American Development Bank: Washington, DC, USA, 2014.

92. Monroe, A.; Asamoah, O.; Lam, Y.; Koenker, H.; Psychas, P.; Lynch, M.; Ricotta, E.; Hornston, S.; Berman, A.;
Harvey, S.A. Outdoor-sleeping and other night-time activities in northern Ghana: Implications for residual
transmission and malaria prevention. Malar. J. 2015, 14, 35. [CrossRef] [PubMed]

93. Sarfraz, M.S.; Tripathi, N.K.; Kitamoto, A. Near real-time characterisation of urban environments: A holistic
approach for monitoring dengue fever risk areas. Int. J. Digit. Earth 2014, 7, 916–934. [CrossRef]

94. Generalized Linear Models and Generalized Additive Models 13.1 Generalized Linear Models and Iterative
Least Squares. Available online: https://www.stat.cmu.edu/~cshalizi/uADA/12/lectures/ch13.pdf
(accessed on 13 May 2019).

95. Adimi, F.; Soebiyanto, R.P.; Safi, N.; Kiang, R. Towards malaria risk prediction in Afghanistan using remote
sensing. Malar. J. 2010, 9, 125. [CrossRef] [PubMed]

96. De Oliveira, E.C.; Dos Santos, E.S.; Zeilhofer, P.; Souza-Santos, R.; Atanaka-Santos, M.
Geographic information systems and logistic regression for high-resolution malaria risk mapping in a
rural settlement of the southern Brazilian Amazon. Malar. J. 2013, 12, 420. [CrossRef] [PubMed]

97. Shumway, R.H.; Stoffer, D.S. Time Series Analysis and Its Applications: With R Examples, 3rd ed.; Springer: New
York, NY, USA, 2011.

98. Zinszer, K.; Verma, A.D.; Charland, K.; Brewer, T.F.; Brownstein, J.S.; Sun, Z.; Buckeridge, D.L. A scoping
review of malaria forecasting: Past work and future directions. BMJ Open 2012, 2, e001992. [CrossRef]

99. Wang, S.; Feng, J.; Liu, G. Application of seasonal time series model in the precipitation forecast.
Math. Comput. Model. 2013, 58, 677–683. [CrossRef]

100. Khameneh, N.J. Machine Learning for Disease Outbreak Detection using Probabilistic Models. Ph.D. Thesis,
École Polytechnique de Montréal, Montreal, QC, Canada, 2014.

http://dx.doi.org/10.1371/journal.pone.0178211
http://dx.doi.org/10.1016/j.apgeog.2013.09.022
http://dx.doi.org/10.1002/sim.5549
http://www.ncbi.nlm.nih.gov/pubmed/22927252
http://dx.doi.org/10.1371/journal.pone.0121158
http://www.ncbi.nlm.nih.gov/pubmed/25803814
http://dx.doi.org/10.1371/journal.pone.0199357
http://dx.doi.org/10.1016/j.ijid.2018.07.023
http://dx.doi.org/10.1186/1476-072X-13-26
http://dx.doi.org/10.1371/journal.pntd.0001908
http://dx.doi.org/10.1590/S0102-311X2009001300009
http://www.ncbi.nlm.nih.gov/pubmed/19287871
http://dx.doi.org/10.1186/1471-2334-14-38
http://dx.doi.org/10.1186/s12936-015-0543-4
http://www.ncbi.nlm.nih.gov/pubmed/25627277
http://dx.doi.org/10.1080/17538947.2013.786144
https://www.stat.cmu.edu/~cshalizi/uADA/12/lectures/ch13.pdf
http://dx.doi.org/10.1186/1475-2875-9-125
http://www.ncbi.nlm.nih.gov/pubmed/20465824
http://dx.doi.org/10.1186/1475-2875-12-420
http://www.ncbi.nlm.nih.gov/pubmed/24237621
http://dx.doi.org/10.1136/bmjopen-2012-001992
http://dx.doi.org/10.1016/j.mcm.2011.10.034


Remote Sens. 2019, 11, 1862 40 of 40

101. Li, Z.; Roux, E.; Dessay, N.; Girod, R.; Stefani, A.; Nacher, M.; Moiret, A.; Seyler, F. Mapping a
knowledge-based malaria hazard index related to landscape using remote sensing: Application to the
cross-border area between French Guiana and Brazil. Remote Sens. 2016, 8, 319. [CrossRef]

102. Catry, T.; Li, Z.; Roux, E.; Herbreteau, V.; Révillion, C.; Dessay, N. Fusion of SAR and optical imagery for
studying the ecoepidemiology of vector-borne diseases in tropical countries. In Proceedings of the 2016
European Space Agency Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016.

103. Catry, T.; Li, Z.; Roux, E.; Herbreteau, V.; Gurgel, H.; Mangeas, M.; Seyler, F.; Dessay, N.; Catry, T.; Li, Z.; et al.
Wetlands and Malaria in the Amazon: Guidelines for the Use of Synthetic Aperture Radar Remote-Sensing.
Int. J. Environ. Res. Public Health 2018, 15, 468. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/rs8040319
http://dx.doi.org/10.3390/ijerph15030468
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Malaria
	Dengue
	West Nile Virus

	Material and Methods
	Literature Search Strategy
	Inclusion and Exclusion Criteria

	State-of-the-Art Review
	Environmental EO Predictors
	Other Non-Environmental Predictors 
	Satellite EO Systems Used for Assessing the Environmental Predictors

	Results and Discussion
	Predictors for Malaria
	Predictors for Dengue
	Predictors for WNV
	Data Driven Uncertainties and Limitations
	Modeling Approaches and Evaluation
	Scalability and Transferability

	Conclusions
	Disclaimer 
	
	References

